Home
Class 12
MATHS
The value of int(0)^(1)(tan^(-1)x)/(cot^...

The value of `int_(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx` is____.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{1} \frac{\tan^{-1} x}{\cot^{-1}(1 - x + x^2)} \, dx, \] we can start by rewriting the cotangent inverse function. Recall that \[ \cot^{-1} \theta = \tan^{-1} \left( \frac{1}{\theta} \right). \] Thus, we can express \(\cot^{-1}(1 - x + x^2)\) as: \[ \cot^{-1}(1 - x + x^2) = \tan^{-1}\left(\frac{1}{1 - x + x^2}\right). \] This allows us to rewrite the integral: \[ I = \int_{0}^{1} \frac{\tan^{-1} x}{\tan^{-1}\left(\frac{1}{1 - x + x^2}\right)} \, dx. \] Next, we can use the property of inverse tangent that states: \[ \tan^{-1} a + \tan^{-1} b = \tan^{-1}\left(\frac{a + b}{1 - ab}\right), \] to analyze the denominator. However, for this problem, we will also utilize a symmetry property of definite integrals. We can define a new integral \( J \): \[ J = \int_{0}^{1} \frac{\tan^{-1}(1 - x)}{\cot^{-1}(1 - (1 - x) + (1 - x)^2)} \, dx. \] Notice that \(1 - x\) is a reflection about \(x = \frac{1}{2}\). We can rewrite \(J\) as: \[ J = \int_{0}^{1} \frac{\tan^{-1}(1 - x)}{\cot^{-1}(x^2 - x + 1)} \, dx. \] Now, we can add \(I\) and \(J\): \[ I + J = \int_{0}^{1} \left( \frac{\tan^{-1} x + \tan^{-1}(1 - x)}{\cot^{-1}(1 - x + x^2)} \right) \, dx. \] Using the property of \(\tan^{-1}\): \[ \tan^{-1} x + \tan^{-1}(1 - x) = \frac{\pi}{4}, \] we can simplify the integral: \[ I + J = \int_{0}^{1} \frac{\frac{\pi}{4}}{\cot^{-1}(1 - x + x^2)} \, dx. \] Now, we can also observe that: \[ \cot^{-1}(1 - x + x^2) = \tan^{-1}(x) + \tan^{-1}(1 - x). \] Thus, we can express \(I + J\) as: \[ I + J = \int_{0}^{1} \frac{\frac{\pi}{4}}{\tan^{-1}(x) + \tan^{-1}(1 - x)} \, dx. \] Since \(I = J\), we have: \[ 2I = \int_{0}^{1} 1 \, dx = 1. \] Therefore, we find: \[ I = \frac{1}{2}. \] Thus, the value of the integral is: \[ \boxed{\frac{1}{2}}. \]

To solve the integral \[ I = \int_{0}^{1} \frac{\tan^{-1} x}{\cot^{-1}(1 - x + x^2)} \, dx, \] we can start by rewriting the cotangent inverse function. Recall that ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

Evaluate : int_(0)^(1)(tan^(-1)x)/(1+x^2)dx

int_(0)^( 1)(tan^(-1)x)^(2)/(1+x^2)dx

The value of int_(0)^(1)(tan^(-1)((x)/(x+1)))/(tan^(-1)((1+2x-2x^(2))/(2)))dx is

Evaluate : int_(0)^(1)((tan^(-1)x)^(2))/(1+x^(2))dx

The value of the integral int_(0)^(1) cot^(-1) (1-x+x^(2))dx , is

int_(0)^(1) ( tan^(-1)x)/( 1+x^(2)) dx is equal to

The value of int_(0)^(1) (1)/(2x-3)dx is

int _(0)^(1) (tan ^(-1)x)/(x ) dx =

Evaluate : int_(0)^(oo)(cot^(-1)x)^(2)dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -NUMERICAL VALUE_TYPE
  1. The value of int0^((3pi)/2)(|tan^(-1)tanx|-|sin^(-1)sinx|)/(|tan^(-1)t...

    Text Solution

    |

  2. L e tf(x)=x^3=(3x^2)/2+x+1/4 Then the value of (int(1/4)^(3/4)f(f(x))...

    Text Solution

    |

  3. The value of int(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is.

    Text Solution

    |

  4. Let f(x) be a differentiable function symmetric about x=2, then the va...

    Text Solution

    |

  5. Let f:[0,oo)->R be a continuous strictly increasing function, such tha...

    Text Solution

    |

  6. If f is continuous function and F(x)=int0^x((2t+3). intt^2 f(u)du)\ dt...

    Text Solution

    |

  7. If the value of the definite integral int0^1(sin^(-1)sqrt(x))/(x^2-x+1...

    Text Solution

    |

  8. Let f(x)=int(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x...

    Text Solution

    |

  9. Let g(x) be differentiable on R and int(sint)^1x^2g(x)dx=(1-sint), wh...

    Text Solution

    |

  10. If int0^oo x^(2n+1)\ e^(-x^2)\ dx=360, then the value of n is

    Text Solution

    |

  11. Let f(x) be a derivable function satisfying f(x)=int0^x e^t sin(x-t) ...

    Text Solution

    |

  12. Let f(x)=1/x^2 int4^x (4t^2-2f'(t))dt then find 9f'(4)

    Text Solution

    |

  13. If the value of the definite integral int0^1^(2007)C7x^(2000)dot(1-x)^...

    Text Solution

    |

  14. IfIn=int0^1(1-x^5)^n dx ,t h e n(55)/7(I(10))/(I(11)) is equal to

    Text Solution

    |

  15. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  16. L e tJ=int(-5)^(-4)(3-x^2)tan(3-x^2)dx and K=int(-2)^(-1)(6-6x+x^2) t...

    Text Solution

    |

  17. The value of the definite integral int(2-1)^(sqrt(2)+1)(x^4+x^2+2)/((x...

    Text Solution

    |

  18. Consider a real valued continuous function f such that f(x)=sinx + int...

    Text Solution

    |

  19. If f(x)=x+int0^1t(x+t)f(t)dt ,then the value of 23/2f(0) is equal...

    Text Solution

    |

  20. Let y=f(x)=4x^(3)+2x-6, then the value of int(0)^(2)f(x)dx+int(0)^(30)...

    Text Solution

    |