Home
Class 12
MATHS
Let f:[0,oo)->R be a continuous strictly...

Let `f:[0,oo)->R` be a continuous strictly increasing function, such that `f^3(x)=int_0^x t*f^2(t)dt` for every `xgeq0.` Then value of `f(6)` is_______

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the function \( f(x) \) given the equation: \[ f^3(x) = \int_0^x t \cdot f^2(t) \, dt \] for every \( x \geq 0 \), and then evaluate \( f(6) \). ### Step 1: Differentiate both sides with respect to \( x \) Using the Fundamental Theorem of Calculus and the chain rule, we differentiate the left-hand side: \[ \frac{d}{dx}[f^3(x)] = 3f^2(x)f'(x) \] Now, we differentiate the right-hand side using Leibniz's rule: \[ \frac{d}{dx}\left[\int_0^x t \cdot f^2(t) \, dt\right] = x \cdot f^2(x) \] Equating both derivatives gives us: \[ 3f^2(x)f'(x) = x \cdot f^2(x) \] ### Step 2: Simplify the equation Assuming \( f^2(x) \neq 0 \) (which is valid since \( f(x) \) is strictly increasing and continuous), we can divide both sides by \( f^2(x) \): \[ 3f'(x) = x \] ### Step 3: Solve for \( f'(x) \) Rearranging gives: \[ f'(x) = \frac{x}{3} \] ### Step 4: Integrate to find \( f(x) \) Now we integrate \( f'(x) \): \[ f(x) = \int \frac{x}{3} \, dx = \frac{x^2}{6} + C \] where \( C \) is the constant of integration. ### Step 5: Determine the constant \( C \) To find \( C \), we can use the condition at \( x = 0 \): Substituting \( x = 0 \) into the original equation: \[ f^3(0) = \int_0^0 t \cdot f^2(t) \, dt = 0 \] This implies: \[ f(0) = 0 \implies \frac{0^2}{6} + C = 0 \implies C = 0 \] Thus, we have: \[ f(x) = \frac{x^2}{6} \] ### Step 6: Evaluate \( f(6) \) Now we substitute \( x = 6 \): \[ f(6) = \frac{6^2}{6} = \frac{36}{6} = 6 \] ### Final Answer The value of \( f(6) \) is \( 6 \). ---

To solve the problem, we need to find the function \( f(x) \) given the equation: \[ f^3(x) = \int_0^x t \cdot f^2(t) \, dt \] for every \( x \geq 0 \), and then evaluate \( f(6) \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f:[0,oo) to R be a continuous strictly increasing function, such that f^3(x)=int_0^x tdotf^2(t)dt for every xgeq0. Then value of f(6) is_______

If f(x)=int_0^x tf(t)dt+2, then

If f(x)=x+int_0^1t(x+t)f(t) dt ,then the value of 23/2f(0) is equal to _________

Let: f:[0,3]vecR be a continuous function such that int_0^3f(x)dx=3. If I=int_0^3(xf(x)+int_0^xf(t)dt)dx , then value of I is equal to

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

Let f:[1,oo] be a differentiable function such that f(1)=2. If 6int_1^xf(t)dt=3xf(x)-x^3 for all xgeq1, then the value of f(2) is

Let f:[1,oo] be a differentiable function such that f(1)=2. If 6int_1^xf(t)dt=3xf(x)-x^3 for all xgeq1, then the value of f(2) is

Let f:R to R be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f(x) be a continuous and differentiable function such that f(x)=int_0^xsin(t^2-t+x)dt Then prove that f^('')(x)+f(x)=cosx^2+2xsinx^2

CENGAGE ENGLISH-DEFINITE INTEGRATION -NUMERICAL VALUE_TYPE
  1. The value of int(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is.

    Text Solution

    |

  2. Let f(x) be a differentiable function symmetric about x=2, then the va...

    Text Solution

    |

  3. Let f:[0,oo)->R be a continuous strictly increasing function, such tha...

    Text Solution

    |

  4. If f is continuous function and F(x)=int0^x((2t+3). intt^2 f(u)du)\ dt...

    Text Solution

    |

  5. If the value of the definite integral int0^1(sin^(-1)sqrt(x))/(x^2-x+1...

    Text Solution

    |

  6. Let f(x)=int(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x...

    Text Solution

    |

  7. Let g(x) be differentiable on R and int(sint)^1x^2g(x)dx=(1-sint), wh...

    Text Solution

    |

  8. If int0^oo x^(2n+1)\ e^(-x^2)\ dx=360, then the value of n is

    Text Solution

    |

  9. Let f(x) be a derivable function satisfying f(x)=int0^x e^t sin(x-t) ...

    Text Solution

    |

  10. Let f(x)=1/x^2 int4^x (4t^2-2f'(t))dt then find 9f'(4)

    Text Solution

    |

  11. If the value of the definite integral int0^1^(2007)C7x^(2000)dot(1-x)^...

    Text Solution

    |

  12. IfIn=int0^1(1-x^5)^n dx ,t h e n(55)/7(I(10))/(I(11)) is equal to

    Text Solution

    |

  13. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  14. L e tJ=int(-5)^(-4)(3-x^2)tan(3-x^2)dx and K=int(-2)^(-1)(6-6x+x^2) t...

    Text Solution

    |

  15. The value of the definite integral int(2-1)^(sqrt(2)+1)(x^4+x^2+2)/((x...

    Text Solution

    |

  16. Consider a real valued continuous function f such that f(x)=sinx + int...

    Text Solution

    |

  17. If f(x)=x+int0^1t(x+t)f(t)dt ,then the value of 23/2f(0) is equal...

    Text Solution

    |

  18. Let y=f(x)=4x^(3)+2x-6, then the value of int(0)^(2)f(x)dx+int(0)^(30)...

    Text Solution

    |

  19. The value of int(1)^(3)(sqrt(1+(x-1)^(3))+(x^(2)-1)^(1/3)+1)dx is .

    Text Solution

    |

  20. The value of int(0)^(1)cos^(-1)((x-x^(2))-sqrt((1-x^(2))(2x-x^(2))))dx...

    Text Solution

    |