Home
Class 12
MATHS
Let f(x)=int(0)^(x)(dt)/(sqrt(1+t^(3))) ...

Let `f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3)))` and `g(x)` be the inverse of `f(x)`. Then the value of `4 (g''(x))/(g(x)^(2))` is________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 4 \frac{g''(x)}{(g(x))^2} \) where \( g(x) \) is the inverse of the function \( f(x) = \int_0^x \frac{dt}{\sqrt{1 + t^3}} \). ### Step-by-step Solution: 1. **Understanding the Functions**: We have \( f(x) = \int_0^x \frac{dt}{\sqrt{1 + t^3}} \) and \( g(x) \) is the inverse of \( f(x) \). This means that \( f(g(x)) = x \). 2. **Differentiating Both Sides**: Differentiate \( f(g(x)) = x \) with respect to \( x \): \[ f'(g(x)) \cdot g'(x) = 1 \] From this, we can express \( g'(x) \): \[ g'(x) = \frac{1}{f'(g(x))} \] 3. **Finding \( f'(x) \)**: By applying the Leibniz rule, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( \int_0^x \frac{dt}{\sqrt{1 + t^3}} \right) = \frac{1}{\sqrt{1 + x^3}} \] Therefore, substituting \( g(x) \) for \( x \): \[ f'(g(x)) = \frac{1}{\sqrt{1 + (g(x))^3}} \] 4. **Substituting Back**: Now substituting back into the equation for \( g'(x) \): \[ g'(x) = \sqrt{1 + (g(x))^3} \] 5. **Finding \( g''(x) \)**: Differentiate \( g'(x) \) to find \( g''(x) \): \[ g''(x) = \frac{d}{dx} \left( \sqrt{1 + (g(x))^3} \right) \] Using the chain rule: \[ g''(x) = \frac{1}{2\sqrt{1 + (g(x))^3}} \cdot 3(g(x))^2 g'(x) \] Substitute \( g'(x) \): \[ g''(x) = \frac{3(g(x))^2 g'(x)}{2\sqrt{1 + (g(x))^3}} = \frac{3(g(x))^2 \sqrt{1 + (g(x))^3}}{2\sqrt{1 + (g(x))^3}} \] Simplifying gives: \[ g''(x) = \frac{3}{2} g(x)^2 \] 6. **Finding \( \frac{g''(x)}{(g(x))^2} \)**: Now we can find: \[ \frac{g''(x)}{(g(x))^2} = \frac{\frac{3}{2} g(x)^2}{(g(x))^2} = \frac{3}{2} \] 7. **Final Calculation**: Finally, we need to find \( 4 \frac{g''(x)}{(g(x))^2} \): \[ 4 \frac{g''(x)}{(g(x))^2} = 4 \cdot \frac{3}{2} = 6 \] Thus, the value of \( 4 \frac{g''(x)}{(g(x))^2} \) is **6**.

To solve the problem, we need to find the value of \( 4 \frac{g''(x)}{(g(x))^2} \) where \( g(x) \) is the inverse of the function \( f(x) = \int_0^x \frac{dt}{\sqrt{1 + t^3}} \). ### Step-by-step Solution: 1. **Understanding the Functions**: We have \( f(x) = \int_0^x \frac{dt}{\sqrt{1 + t^3}} \) and \( g(x) \) is the inverse of \( f(x) \). This means that \( f(g(x)) = x \). 2. **Differentiating Both Sides**: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=int_2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Then the value of g'(0)

Let f(x)=int_2^x (dt)/sqrt(1+t^4) and g be the inverse of f . Then, the value of g'(0) is

Let f(x) = int_(0)^(x)(dt)/(sqrt(1+t^(2))) and g(x) be the inverse of f(x) , then which one of the following holds good ? (A) 2g'' = g^(2) (B) 2g'' = g^(2) (C) 3g'' = 2g^(2) (D) 3g'' = g^(2)

Let f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2)+(x^(3))/(3) . If g(x) is inverse of f(x) then the value of (1)/(g^(')(-(7)/(6))) is

Let f (x) = x^(3)+ 4x ^(2)+ 6x and g (x) be inverse then the vlaue of g' (-4):

If f(x)=x^(3)+3x+1 and g(x) is the inverse function of f(x), then the value of g'(5) is equal to

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If f(x)=x^(3)+3x+4 and g is the inverse function of f(x), then the value of (d)/(dx)((g(x))/(g(g(x)))) at x = 4 equals

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

CENGAGE ENGLISH-DEFINITE INTEGRATION -NUMERICAL VALUE_TYPE
  1. The value of int(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is.

    Text Solution

    |

  2. Let f(x) be a differentiable function symmetric about x=2, then the va...

    Text Solution

    |

  3. Let f:[0,oo)->R be a continuous strictly increasing function, such tha...

    Text Solution

    |

  4. If f is continuous function and F(x)=int0^x((2t+3). intt^2 f(u)du)\ dt...

    Text Solution

    |

  5. If the value of the definite integral int0^1(sin^(-1)sqrt(x))/(x^2-x+1...

    Text Solution

    |

  6. Let f(x)=int(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x...

    Text Solution

    |

  7. Let g(x) be differentiable on R and int(sint)^1x^2g(x)dx=(1-sint), wh...

    Text Solution

    |

  8. If int0^oo x^(2n+1)\ e^(-x^2)\ dx=360, then the value of n is

    Text Solution

    |

  9. Let f(x) be a derivable function satisfying f(x)=int0^x e^t sin(x-t) ...

    Text Solution

    |

  10. Let f(x)=1/x^2 int4^x (4t^2-2f'(t))dt then find 9f'(4)

    Text Solution

    |

  11. If the value of the definite integral int0^1^(2007)C7x^(2000)dot(1-x)^...

    Text Solution

    |

  12. IfIn=int0^1(1-x^5)^n dx ,t h e n(55)/7(I(10))/(I(11)) is equal to

    Text Solution

    |

  13. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  14. L e tJ=int(-5)^(-4)(3-x^2)tan(3-x^2)dx and K=int(-2)^(-1)(6-6x+x^2) t...

    Text Solution

    |

  15. The value of the definite integral int(2-1)^(sqrt(2)+1)(x^4+x^2+2)/((x...

    Text Solution

    |

  16. Consider a real valued continuous function f such that f(x)=sinx + int...

    Text Solution

    |

  17. If f(x)=x+int0^1t(x+t)f(t)dt ,then the value of 23/2f(0) is equal...

    Text Solution

    |

  18. Let y=f(x)=4x^(3)+2x-6, then the value of int(0)^(2)f(x)dx+int(0)^(30)...

    Text Solution

    |

  19. The value of int(1)^(3)(sqrt(1+(x-1)^(3))+(x^(2)-1)^(1/3)+1)dx is .

    Text Solution

    |

  20. The value of int(0)^(1)cos^(-1)((x-x^(2))-sqrt((1-x^(2))(2x-x^(2))))dx...

    Text Solution

    |