Home
Class 12
MATHS
Let g(x) be differentiable on R and int(...

Let `g(x)` be differentiable on `R` and `int_(sint)^1x^2g(x)dx=(1-sint),` where `t in (0,pi/2)dot` Then the value of `g(1/(sqrt(2)))` is____

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( g\left(\frac{1}{\sqrt{2}}\right) \) given the equation \[ \int_{\sin t}^{1} x^2 g(x) \, dx = 1 - \sin t, \] where \( t \in (0, \frac{\pi}{2}) \), we can follow these steps: ### Step 1: Differentiate both sides with respect to \( t \) We apply the Fundamental Theorem of Calculus and differentiate both sides of the equation with respect to \( t \): \[ \frac{d}{dt} \left( \int_{\sin t}^{1} x^2 g(x) \, dx \right) = \frac{d}{dt} (1 - \sin t). \] ### Step 2: Apply Leibniz's Rule Using Leibniz's rule for differentiation under the integral sign, we have: \[ \frac{d}{dt} \left( \int_{\sin t}^{1} x^2 g(x) \, dx \right) = x^2 g(x) \bigg|_{x=1} \cdot 0 - x^2 g(x) \bigg|_{x=\sin t} \cdot \cos t. \] Since the upper limit is a constant (1), its derivative is 0. Thus, we only need to consider the lower limit: \[ = -\sin^2 t \cdot g(\sin t) \cdot \cos t. \] ### Step 3: Differentiate the right side Now differentiate the right side: \[ \frac{d}{dt} (1 - \sin t) = -\cos t. \] ### Step 4: Set the derivatives equal Setting the derivatives equal gives us: \[ -\sin^2 t \cdot g(\sin t) \cdot \cos t = -\cos t. \] ### Step 5: Simplify the equation We can cancel \(-\cos t\) from both sides (since \( \cos t \neq 0 \) for \( t \in (0, \frac{\pi}{2}) \)): \[ \sin^2 t \cdot g(\sin t) = 1. \] ### Step 6: Solve for \( g(\sin t) \) Thus, we have: \[ g(\sin t) = \frac{1}{\sin^2 t}. \] ### Step 7: Find \( g\left(\frac{1}{\sqrt{2}}\right) \) To find \( g\left(\frac{1}{\sqrt{2}}\right) \), we need to determine \( t \) such that \( \sin t = \frac{1}{\sqrt{2}} \). This occurs when \( t = \frac{\pi}{4} \). Substituting \( t = \frac{\pi}{4} \) into our expression for \( g(\sin t) \): \[ g\left(\frac{1}{\sqrt{2}}\right) = g(\sin(\frac{\pi}{4})) = \frac{1}{\sin^2(\frac{\pi}{4})}. \] Since \( \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \): \[ g\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{\left(\frac{1}{\sqrt{2}}\right)^2} = \frac{1}{\frac{1}{2}} = 2. \] ### Final Answer Thus, the value of \( g\left(\frac{1}{\sqrt{2}}\right) \) is \[ \boxed{2}. \]

To find the value of \( g\left(\frac{1}{\sqrt{2}}\right) \) given the equation \[ \int_{\sin t}^{1} x^2 g(x) \, dx = 1 - \sin t, \] where \( t \in (0, \frac{\pi}{2}) \), we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If g(x) is a differentiable function such that int_(1)^(sinalpha)x^(2)g(x)dx=(sin alpha-1), AA alpha in (0,(pi)/(2)) , then the value of g((1)/(3)) is equal to

Let g(x)=int(1+2cosx)/((cosx+2)^2)dxa n dg(0)=0. then the value of 8g(pi/2) is __________

Let g(x)=int(1+2cosx)/((cosx+2)^2)dxa n dg(0)=0. then the value of 8g(pi/2) is __________

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x) . Then the value of 4 (g''(x))/(g(x)^(2)) is________.

Let f(x)=int_2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Then the value of g'(0)

Let y=f(x) be the solution of the differential equation (dy)/(dx)+k/7 x tan x=1+xtanx-sinx, where f(0)=1 and let k be the minimum value of g(x) where g(x)="max"|(sqrt(193)-1)/2cosy+cos(y+(pi)/3)-x| where yepsilonR then Area bounded by y=f(x) and its inverse between x=(pi)/2 and x=(7pi)/2 is

Let g be the inverse function of a differentiable function f and G (x) =(1)/(g (x)). If f (4) =2 and f '(4) =(1)/(16), then the value of (G'(2))^(2) equals to:

Let g (x) be a differentiable function satisfying (d)/(dx){g(x)}=g(x) and g (0)=1 , then intg(x)((2-sin2x)/(1-cos2x))dx is equal to

Let f(x)=int_2^x (dt)/sqrt(1+t^4) and g be the inverse of f . Then, the value of g'(0) is

int_0^1 (tan^-1x)/xdx-1/2int_0^(pi/2) t/sint dt has the value (A) -1 (B) 1 (C) 2 (D) 0

CENGAGE ENGLISH-DEFINITE INTEGRATION -NUMERICAL VALUE_TYPE
  1. The value of int(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is.

    Text Solution

    |

  2. Let f(x) be a differentiable function symmetric about x=2, then the va...

    Text Solution

    |

  3. Let f:[0,oo)->R be a continuous strictly increasing function, such tha...

    Text Solution

    |

  4. If f is continuous function and F(x)=int0^x((2t+3). intt^2 f(u)du)\ dt...

    Text Solution

    |

  5. If the value of the definite integral int0^1(sin^(-1)sqrt(x))/(x^2-x+1...

    Text Solution

    |

  6. Let f(x)=int(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x...

    Text Solution

    |

  7. Let g(x) be differentiable on R and int(sint)^1x^2g(x)dx=(1-sint), wh...

    Text Solution

    |

  8. If int0^oo x^(2n+1)\ e^(-x^2)\ dx=360, then the value of n is

    Text Solution

    |

  9. Let f(x) be a derivable function satisfying f(x)=int0^x e^t sin(x-t) ...

    Text Solution

    |

  10. Let f(x)=1/x^2 int4^x (4t^2-2f'(t))dt then find 9f'(4)

    Text Solution

    |

  11. If the value of the definite integral int0^1^(2007)C7x^(2000)dot(1-x)^...

    Text Solution

    |

  12. IfIn=int0^1(1-x^5)^n dx ,t h e n(55)/7(I(10))/(I(11)) is equal to

    Text Solution

    |

  13. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  14. L e tJ=int(-5)^(-4)(3-x^2)tan(3-x^2)dx and K=int(-2)^(-1)(6-6x+x^2) t...

    Text Solution

    |

  15. The value of the definite integral int(2-1)^(sqrt(2)+1)(x^4+x^2+2)/((x...

    Text Solution

    |

  16. Consider a real valued continuous function f such that f(x)=sinx + int...

    Text Solution

    |

  17. If f(x)=x+int0^1t(x+t)f(t)dt ,then the value of 23/2f(0) is equal...

    Text Solution

    |

  18. Let y=f(x)=4x^(3)+2x-6, then the value of int(0)^(2)f(x)dx+int(0)^(30)...

    Text Solution

    |

  19. The value of int(1)^(3)(sqrt(1+(x-1)^(3))+(x^(2)-1)^(1/3)+1)dx is .

    Text Solution

    |

  20. The value of int(0)^(1)cos^(-1)((x-x^(2))-sqrt((1-x^(2))(2x-x^(2))))dx...

    Text Solution

    |