Home
Class 12
MATHS
Let f(x) be a derivable function satisfy...

Let `f(x)` be a derivable function satisfying `f(x)=int_0^x e^t sin(x-t) dt` and `g(x)=f '' (x)-f(x)` Then the possible integers in the range of `g(x)` is_______

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) defined by the integral: \[ f(x) = \int_0^x e^t \sin(x - t) \, dt \] We also have the function \( g(x) \) defined as: \[ g(x) = f''(x) - f(x) \] ### Step 1: Differentiate \( f(x) \) Using Leibniz's rule for differentiation under the integral sign, we can find the first derivative of \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( \int_0^x e^t \sin(x - t) \, dt \right) = e^x \sin(0) + \int_0^x e^t \cos(x - t) \, dt \] Since \( \sin(0) = 0 \), we have: \[ f'(x) = \int_0^x e^t \cos(x - t) \, dt \] ### Step 2: Differentiate \( f'(x) \) to find \( f''(x) \) Now, we differentiate \( f'(x) \) again: \[ f''(x) = \frac{d}{dx} \left( \int_0^x e^t \cos(x - t) \, dt \right) = e^x \cos(0) + \int_0^x e^t (-\sin(x - t)) \, dt \] This simplifies to: \[ f''(x) = e^x + \int_0^x e^t (-\sin(x - t)) \, dt \] ### Step 3: Substitute \( f(x) \) and \( f''(x) \) into \( g(x) \) Now we substitute \( f(x) \) and \( f''(x) \) into \( g(x) \): \[ g(x) = f''(x) - f(x) = \left( e^x + \int_0^x e^t (-\sin(x - t)) \, dt \right) - \int_0^x e^t \sin(x - t) \, dt \] This can be simplified to: \[ g(x) = e^x + \int_0^x e^t (-\sin(x - t) - \sin(x - t)) \, dt = e^x - \int_0^x e^t \sin(x - t) \, dt \] ### Step 4: Analyze the range of \( g(x) \) We know that \( g(x) = e^x - f(x) \). To find the range of \( g(x) \), we need to analyze the behavior of \( f(x) \). Using the properties of the sine function, we can say: \[ \sin(x - t) \text{ oscillates between } -1 \text{ and } 1 \] Thus, \( f(x) \) will be bounded. More specifically, we can find the maximum and minimum values of \( g(x) \). ### Step 5: Determine the possible integers in the range of \( g(x) \) The range of \( g(x) \) can be determined by evaluating the limits of \( g(x) \) as \( x \) approaches certain values. Given that \( e^x \) grows exponentially while \( f(x) \) is bounded, we can conclude that: \[ g(x) \text{ will take values between } -\sqrt{2} \text{ and } \sqrt{2} \] Thus, the possible integers in the range of \( g(x) \) are: \[ -1, 0, 1 \] ### Final Answer The possible integers in the range of \( g(x) \) are: \[ \boxed{3} \]

To solve the problem, we need to analyze the function \( f(x) \) defined by the integral: \[ f(x) = \int_0^x e^t \sin(x - t) \, dt \] We also have the function \( g(x) \) defined as: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a derivable function satisfying f(x)=int_0^x e^tsin(x-t)dta n dg(x)=f''(x)-f(x) Then the possible integers in the range of g(x) is_______

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f:R ->(0,oo) be a real valued function satisfying int_0^x tf(x-t) dt =e^(2x)-1 then find f(x) ?

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

Let f:RtoR be a differntiable function satisfying f(x)=x^(2)+3int_(0)^(x)e^(-t^(3)).f(x-t^(3))dt . Then find f(x) .

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

" If " f(x) =int_(0)^(x)" t sin t dt tehn " f(x) is

If f(x)=int_0^x(sint)/t dt ,x >0, then

Let f:R to R be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f(x) be a function satisfying f\'(x)=f(x) with f(0)=1 and g(x) be the function satisfying f(x)+g(x)=x^2 . Then the value of integral int_0^1 f(x)g(x)dx is equal to (A) (e-2)/4 (B) (e-3)/2 (C) (e-4)/2 (D) none of these

CENGAGE ENGLISH-DEFINITE INTEGRATION -NUMERICAL VALUE_TYPE
  1. The value of int(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is.

    Text Solution

    |

  2. Let f(x) be a differentiable function symmetric about x=2, then the va...

    Text Solution

    |

  3. Let f:[0,oo)->R be a continuous strictly increasing function, such tha...

    Text Solution

    |

  4. If f is continuous function and F(x)=int0^x((2t+3). intt^2 f(u)du)\ dt...

    Text Solution

    |

  5. If the value of the definite integral int0^1(sin^(-1)sqrt(x))/(x^2-x+1...

    Text Solution

    |

  6. Let f(x)=int(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x...

    Text Solution

    |

  7. Let g(x) be differentiable on R and int(sint)^1x^2g(x)dx=(1-sint), wh...

    Text Solution

    |

  8. If int0^oo x^(2n+1)\ e^(-x^2)\ dx=360, then the value of n is

    Text Solution

    |

  9. Let f(x) be a derivable function satisfying f(x)=int0^x e^t sin(x-t) ...

    Text Solution

    |

  10. Let f(x)=1/x^2 int4^x (4t^2-2f'(t))dt then find 9f'(4)

    Text Solution

    |

  11. If the value of the definite integral int0^1^(2007)C7x^(2000)dot(1-x)^...

    Text Solution

    |

  12. IfIn=int0^1(1-x^5)^n dx ,t h e n(55)/7(I(10))/(I(11)) is equal to

    Text Solution

    |

  13. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  14. L e tJ=int(-5)^(-4)(3-x^2)tan(3-x^2)dx and K=int(-2)^(-1)(6-6x+x^2) t...

    Text Solution

    |

  15. The value of the definite integral int(2-1)^(sqrt(2)+1)(x^4+x^2+2)/((x...

    Text Solution

    |

  16. Consider a real valued continuous function f such that f(x)=sinx + int...

    Text Solution

    |

  17. If f(x)=x+int0^1t(x+t)f(t)dt ,then the value of 23/2f(0) is equal...

    Text Solution

    |

  18. Let y=f(x)=4x^(3)+2x-6, then the value of int(0)^(2)f(x)dx+int(0)^(30)...

    Text Solution

    |

  19. The value of int(1)^(3)(sqrt(1+(x-1)^(3))+(x^(2)-1)^(1/3)+1)dx is .

    Text Solution

    |

  20. The value of int(0)^(1)cos^(-1)((x-x^(2))-sqrt((1-x^(2))(2x-x^(2))))dx...

    Text Solution

    |