Home
Class 12
MATHS
IfIn=int0^1(1-x^5)^n dx ,t h e n(55)/7(I...

`IfI_n=int_0^1(1-x^5)^n dx ,t h e n(55)/7(I_(10))/(I_(11))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \frac{55}{7} \cdot \frac{I_{10}}{I_{11}} \), where \( I_n = \int_0^1 (1 - x^5)^n \, dx \). ### Step 1: Define the integral We start with the definition of \( I_n \): \[ I_n = \int_0^1 (1 - x^5)^n \, dx \] ### Step 2: Find \( I_{11} \) using integration by parts To find \( I_{11} \), we can use integration by parts. We set: - \( u = (1 - x^5)^{11} \) (first function) - \( dv = dx \) (second function) Then, we differentiate and integrate: - \( du = -55x^4(1 - x^5)^{10} \, dx \) - \( v = x \) Using integration by parts: \[ I_{11} = \left[ (1 - x^5)^{11} \cdot x \right]_0^1 - \int_0^1 x \cdot (-55x^4(1 - x^5)^{10}) \, dx \] Evaluating the boundary terms: \[ \left[ (1 - x^5)^{11} \cdot x \right]_0^1 = (1 - 1)^{11} \cdot 1 - (1 - 0)^{11} \cdot 0 = 0 - 0 = 0 \] Thus, we have: \[ I_{11} = 55 \int_0^1 x^5 (1 - x^5)^{10} \, dx \] ### Step 3: Change the variable in the integral Now, we can express \( I_{11} \) in terms of \( I_{10} \): \[ I_{11} = 55 \int_0^1 x^5 (1 - x^5)^{10} \, dx \] Using the substitution \( x^5 = t \), we have \( dx = \frac{1}{5} t^{-\frac{4}{5}} dt \) and the limits change from \( x = 0 \) to \( x = 1 \) (which corresponds to \( t = 0 \) to \( t = 1 \)): \[ I_{11} = 55 \cdot \frac{1}{5} \int_0^1 (1 - t)^{10} t^{\frac{1}{5} - 1} \, dt \] This integral is a Beta function and can be expressed as: \[ I_{11} = 11 \cdot B\left(\frac{6}{5}, 11\right) \] ### Step 4: Relate \( I_{10} \) and \( I_{11} \) Using a similar process, we find \( I_{10} \): \[ I_{10} = 55 \cdot \frac{1}{5} \int_0^1 (1 - t)^{9} t^{\frac{1}{5} - 1} \, dt \] Thus, we have: \[ \frac{I_{10}}{I_{11}} = \frac{B\left(\frac{6}{5}, 10\right)}{B\left(\frac{6}{5}, 11\right)} = \frac{10}{11} \] ### Step 5: Substitute back into the expression Now substituting back into the original expression: \[ \frac{I_{10}}{I_{11}} = \frac{10}{11} \] ### Step 6: Calculate the final result Now we can calculate: \[ \frac{55}{7} \cdot \frac{I_{10}}{I_{11}} = \frac{55}{7} \cdot \frac{10}{11} = \frac{50}{7} \] Thus, the final answer is: \[ \boxed{8} \]

To solve the problem, we need to evaluate the expression \( \frac{55}{7} \cdot \frac{I_{10}}{I_{11}} \), where \( I_n = \int_0^1 (1 - x^5)^n \, dx \). ### Step 1: Define the integral We start with the definition of \( I_n \): \[ I_n = \int_0^1 (1 - x^5)^n \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If I_n=int_0^1(1-x^5)^n dx ,t h e n(55)/7(I_(10))/(I_(11)) is equal to ___

IfI_n=int_0^pie^x(sin"x")^("n")dx ,t h e n(I_3)/(I_1)"is equal to" 3/5 (b) 1/5 (c) 1 (d) 2/5

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to

If I_(n)=int_(0)^(pi) e^(x)sin^(n)x " dx then " (I_(3))/(I_(1)) is equal to

"I f"I_1=int_0^1prod_(r=1)^(2016)(r-x)dxa n dI_2=int_0^1prod_(r=0)^(2015)(r+x)dx ,t h e n(I_1)/(I_2) is equal to 2 (b) 1/2 (c) -1 (d) 1

If I_n=int( lnx)^n dx then I_n+nI_(n-1)

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

If = int_(1)^(e) (logx)^(n) dx, "then"I_(n)+nI_(n-1) is equal to

If I(m,n)=int_0^1x^(m-1)(1-x)^(n-1)dx , then

If I_m=int_1^e (lnx)^m dx ,m in N , then I_(10)+10 I_9 is equal to (A) e^(10) (B) (e^(10))/(10) (C) e (D) e-1

CENGAGE ENGLISH-DEFINITE INTEGRATION -NUMERICAL VALUE_TYPE
  1. The value of int(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is.

    Text Solution

    |

  2. Let f(x) be a differentiable function symmetric about x=2, then the va...

    Text Solution

    |

  3. Let f:[0,oo)->R be a continuous strictly increasing function, such tha...

    Text Solution

    |

  4. If f is continuous function and F(x)=int0^x((2t+3). intt^2 f(u)du)\ dt...

    Text Solution

    |

  5. If the value of the definite integral int0^1(sin^(-1)sqrt(x))/(x^2-x+1...

    Text Solution

    |

  6. Let f(x)=int(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x...

    Text Solution

    |

  7. Let g(x) be differentiable on R and int(sint)^1x^2g(x)dx=(1-sint), wh...

    Text Solution

    |

  8. If int0^oo x^(2n+1)\ e^(-x^2)\ dx=360, then the value of n is

    Text Solution

    |

  9. Let f(x) be a derivable function satisfying f(x)=int0^x e^t sin(x-t) ...

    Text Solution

    |

  10. Let f(x)=1/x^2 int4^x (4t^2-2f'(t))dt then find 9f'(4)

    Text Solution

    |

  11. If the value of the definite integral int0^1^(2007)C7x^(2000)dot(1-x)^...

    Text Solution

    |

  12. IfIn=int0^1(1-x^5)^n dx ,t h e n(55)/7(I(10))/(I(11)) is equal to

    Text Solution

    |

  13. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  14. L e tJ=int(-5)^(-4)(3-x^2)tan(3-x^2)dx and K=int(-2)^(-1)(6-6x+x^2) t...

    Text Solution

    |

  15. The value of the definite integral int(2-1)^(sqrt(2)+1)(x^4+x^2+2)/((x...

    Text Solution

    |

  16. Consider a real valued continuous function f such that f(x)=sinx + int...

    Text Solution

    |

  17. If f(x)=x+int0^1t(x+t)f(t)dt ,then the value of 23/2f(0) is equal...

    Text Solution

    |

  18. Let y=f(x)=4x^(3)+2x-6, then the value of int(0)^(2)f(x)dx+int(0)^(30)...

    Text Solution

    |

  19. The value of int(1)^(3)(sqrt(1+(x-1)^(3))+(x^(2)-1)^(1/3)+1)dx is .

    Text Solution

    |

  20. The value of int(0)^(1)cos^(-1)((x-x^(2))-sqrt((1-x^(2))(2x-x^(2))))dx...

    Text Solution

    |