Home
Class 12
MATHS
Consider a real valued continuous functi...

Consider a real valued continuous function `f` such that `f(x)=sinx + int_(-pi//2)^(pi//2) (sinx+t(f(t))dt`. If `M` and `m` are maximum and minimum values of function `f`, then the value of `M//m` is____________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the function defined as: \[ f(x) = \sin x + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \sin x + t f(t) \right) dt \] ### Step 1: Simplify the Integral We can break down the integral into two parts: \[ f(x) = \sin x + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x \, dt + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t f(t) \, dt \] The first integral simplifies because \(\sin x\) is constant with respect to \(t\): \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x \, dt = \sin x \cdot \left( \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) \right) = \sin x \cdot \pi \] Thus, we have: \[ f(x) = \sin x + \pi \sin x + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t f(t) \, dt \] ### Step 2: Combine Terms Now we can combine the terms involving \(\sin x\): \[ f(x) = (1 + \pi) \sin x + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t f(t) \, dt \] Let \(A = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t f(t) \, dt\). Then we can write: \[ f(x) = (1 + \pi) \sin x + A \] ### Step 3: Determine the Value of A To find \(A\), we can substitute \(f(t)\) back into the integral: \[ A = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \left( (1 + \pi) \sin t + A \right) dt \] This simplifies to: \[ A = (1 + \pi) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \sin t \, dt + A \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \, dt \] The second integral, \(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \, dt\), evaluates to 0 because it is symmetric around 0. Therefore, we have: \[ A = (1 + \pi) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \sin t \, dt \] ### Step 4: Calculate the Integral Using integration by parts for \(\int t \sin t \, dt\): Let \(u = t\) and \(dv = \sin t \, dt\). Then \(du = dt\) and \(v = -\cos t\). Using integration by parts: \[ \int t \sin t \, dt = -t \cos t + \int \cos t \, dt = -t \cos t + \sin t \] Evaluating from \(-\frac{\pi}{2}\) to \(\frac{\pi}{2}\): \[ \left[-t \cos t + \sin t\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \left[-\frac{\pi}{2} \cdot 0 + 1\right] - \left[\frac{\pi}{2} \cdot 0 - 1\right] = 1 - (-1) = 2 \] Thus, \(A = (1 + \pi) \cdot 2 = 2(1 + \pi)\). ### Step 5: Substitute A Back into f(x) Now substituting \(A\) back into \(f(x)\): \[ f(x) = (1 + \pi) \sin x + 2(1 + \pi) \] ### Step 6: Find Maximum and Minimum Values The maximum value of \(\sin x\) is 1, and the minimum value is -1. Therefore: - Maximum \(M\) of \(f(x)\): \[ M = (1 + \pi) \cdot 1 + 2(1 + \pi) = 3 + 3\pi \] - Minimum \(m\) of \(f(x)\): \[ m = (1 + \pi) \cdot (-1) + 2(1 + \pi) = -1 - \pi + 2 + 2\pi = 1 + \pi \] ### Step 7: Calculate \(\frac{M}{m}\) Now we calculate \(\frac{M}{m}\): \[ \frac{M}{m} = \frac{3 + 3\pi}{1 + \pi} \] ### Final Result Thus, the value of \(\frac{M}{m}\) is: \[ \frac{M}{m} = 3 \]

To solve the problem, we start with the function defined as: \[ f(x) = \sin x + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \sin x + t f(t) \right) dt \] ### Step 1: Simplify the Integral We can break down the integral into two parts: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertible for

Find the maximum and minimum values of the function f(x) = x+ sin 2x, (0 lt x lt pi) .

The value of int_(-pi)^(pi) sinx f(cosx)dx is

f is a real valued function from R to R such that f(x)+f(-x)=2 , then int_(1-x)^(1+X)f^(-1)(t)dt=

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int_(0)^(pi//2) f(x)dx is

A function f(x) satisfies f(x)=sinx+int_0^xf^(prime)(t)(2sint-sin^2t)dt is

Find the maximum and minimum values of f(x)=sinx+1/2cos2x in [0,\ pi/2] .

If M and m are maximum and minimum value of the function f(x)= (tan^(2)x+4tanx+9)/(1+tan^(2)x) , then (M + m) equals

Find the maximum and minimum value of f(x)=sinx+1/2cos2xin[0,pi/2]dot

CENGAGE ENGLISH-DEFINITE INTEGRATION -NUMERICAL VALUE_TYPE
  1. The value of int(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is.

    Text Solution

    |

  2. Let f(x) be a differentiable function symmetric about x=2, then the va...

    Text Solution

    |

  3. Let f:[0,oo)->R be a continuous strictly increasing function, such tha...

    Text Solution

    |

  4. If f is continuous function and F(x)=int0^x((2t+3). intt^2 f(u)du)\ dt...

    Text Solution

    |

  5. If the value of the definite integral int0^1(sin^(-1)sqrt(x))/(x^2-x+1...

    Text Solution

    |

  6. Let f(x)=int(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x...

    Text Solution

    |

  7. Let g(x) be differentiable on R and int(sint)^1x^2g(x)dx=(1-sint), wh...

    Text Solution

    |

  8. If int0^oo x^(2n+1)\ e^(-x^2)\ dx=360, then the value of n is

    Text Solution

    |

  9. Let f(x) be a derivable function satisfying f(x)=int0^x e^t sin(x-t) ...

    Text Solution

    |

  10. Let f(x)=1/x^2 int4^x (4t^2-2f'(t))dt then find 9f'(4)

    Text Solution

    |

  11. If the value of the definite integral int0^1^(2007)C7x^(2000)dot(1-x)^...

    Text Solution

    |

  12. IfIn=int0^1(1-x^5)^n dx ,t h e n(55)/7(I(10))/(I(11)) is equal to

    Text Solution

    |

  13. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  14. L e tJ=int(-5)^(-4)(3-x^2)tan(3-x^2)dx and K=int(-2)^(-1)(6-6x+x^2) t...

    Text Solution

    |

  15. The value of the definite integral int(2-1)^(sqrt(2)+1)(x^4+x^2+2)/((x...

    Text Solution

    |

  16. Consider a real valued continuous function f such that f(x)=sinx + int...

    Text Solution

    |

  17. If f(x)=x+int0^1t(x+t)f(t)dt ,then the value of 23/2f(0) is equal...

    Text Solution

    |

  18. Let y=f(x)=4x^(3)+2x-6, then the value of int(0)^(2)f(x)dx+int(0)^(30)...

    Text Solution

    |

  19. The value of int(1)^(3)(sqrt(1+(x-1)^(3))+(x^(2)-1)^(1/3)+1)dx is .

    Text Solution

    |

  20. The value of int(0)^(1)cos^(-1)((x-x^(2))-sqrt((1-x^(2))(2x-x^(2))))dx...

    Text Solution

    |