Home
Class 12
MATHS
If f(x)=x+int0^1t(x+t)f(t)dt ,then the ...

If `f(x)=x+int_0^1t(x+t)f(t)`dt ,then the value of `23/2f(0)` is equal to _________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function defined by the integral equation and then find the value of \( \frac{23}{2} f(0) \). ### Step 1: Define the function We start with the given function: \[ f(x) = x + \int_0^1 t(x + t)f(t) \, dt \] ### Step 2: Substitute \( x = 0 \) To find \( f(0) \), we substitute \( x = 0 \) into the equation: \[ f(0) = 0 + \int_0^1 t(0 + t)f(t) \, dt = \int_0^1 t^2 f(t) \, dt \] This simplifies to: \[ f(0) = \int_0^1 t^2 f(t) \, dt \] ### Step 3: Express \( f(t) \) We can express \( f(t) \) in terms of \( t \): \[ f(t) = t + \int_0^1 s(t + s)f(s) \, ds \] This means we need to evaluate \( f(t) \) in a similar manner. ### Step 4: Substitute \( f(t) \) into the integral Substituting \( f(t) \) into the integral: \[ f(t) = t + \int_0^1 t^2 f(t) \, dt + \int_0^1 t(s^2 + ts)f(s) \, ds \] This gives us a recursive relationship. ### Step 5: Define constants Let: \[ A = \int_0^1 t^2 f(t) \, dt \] Then we can express \( f(0) \) as: \[ f(0) = A \] ### Step 6: Set up equations From the previous steps, we have: \[ f(0) = A \quad \text{and} \quad f(t) = t + A \] Substituting \( f(t) \) back into the integral: \[ A = \int_0^1 t^2 (t + A) \, dt = \int_0^1 (t^3 + At^2) \, dt \] Calculating the integrals: \[ A = \left[ \frac{t^4}{4} \right]_0^1 + A \left[ \frac{t^3}{3} \right]_0^1 = \frac{1}{4} + \frac{A}{3} \] ### Step 7: Solve for \( A \) Rearranging gives: \[ A - \frac{A}{3} = \frac{1}{4} \] This simplifies to: \[ \frac{2A}{3} = \frac{1}{4} \] Multiplying both sides by \( \frac{3}{2} \): \[ A = \frac{3}{8} \] ### Step 8: Find \( f(0) \) Thus, we have: \[ f(0) = \frac{3}{8} \] ### Step 9: Calculate \( \frac{23}{2} f(0) \) Now, we can find \( \frac{23}{2} f(0) \): \[ \frac{23}{2} f(0) = \frac{23}{2} \cdot \frac{3}{8} = \frac{69}{16} \] ### Final Answer The value of \( \frac{23}{2} f(0) \) is: \[ \frac{69}{16} \]

To solve the problem, we need to evaluate the function defined by the integral equation and then find the value of \( \frac{23}{2} f(0) \). ### Step 1: Define the function We start with the given function: \[ f(x) = x + \int_0^1 t(x + t)f(t) \, dt \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_0^x tf(t)dt+2, then

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If f(x)=int_0^x(sint)/t dt ,x >0, then

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If f(x) is a continuous function such that f(x) gt 0 for all x gt 0 and (f(x))^(2020)=1+int_(0)^(x) f(t) dt , then the value of {f(2020)}^(2019) is equal to

If f(x)=x+int_0^1 t(x+t) f(t)dt, then find the value of the definite integral int_0^1 f(x)dx.

If f(x)=int_(0)^(1)(dt)/(1+|x-t|),x in R . The value of f'(1//2) is equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -NUMERICAL VALUE_TYPE
  1. The value of int(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is.

    Text Solution

    |

  2. Let f(x) be a differentiable function symmetric about x=2, then the va...

    Text Solution

    |

  3. Let f:[0,oo)->R be a continuous strictly increasing function, such tha...

    Text Solution

    |

  4. If f is continuous function and F(x)=int0^x((2t+3). intt^2 f(u)du)\ dt...

    Text Solution

    |

  5. If the value of the definite integral int0^1(sin^(-1)sqrt(x))/(x^2-x+1...

    Text Solution

    |

  6. Let f(x)=int(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x...

    Text Solution

    |

  7. Let g(x) be differentiable on R and int(sint)^1x^2g(x)dx=(1-sint), wh...

    Text Solution

    |

  8. If int0^oo x^(2n+1)\ e^(-x^2)\ dx=360, then the value of n is

    Text Solution

    |

  9. Let f(x) be a derivable function satisfying f(x)=int0^x e^t sin(x-t) ...

    Text Solution

    |

  10. Let f(x)=1/x^2 int4^x (4t^2-2f'(t))dt then find 9f'(4)

    Text Solution

    |

  11. If the value of the definite integral int0^1^(2007)C7x^(2000)dot(1-x)^...

    Text Solution

    |

  12. IfIn=int0^1(1-x^5)^n dx ,t h e n(55)/7(I(10))/(I(11)) is equal to

    Text Solution

    |

  13. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  14. L e tJ=int(-5)^(-4)(3-x^2)tan(3-x^2)dx and K=int(-2)^(-1)(6-6x+x^2) t...

    Text Solution

    |

  15. The value of the definite integral int(2-1)^(sqrt(2)+1)(x^4+x^2+2)/((x...

    Text Solution

    |

  16. Consider a real valued continuous function f such that f(x)=sinx + int...

    Text Solution

    |

  17. If f(x)=x+int0^1t(x+t)f(t)dt ,then the value of 23/2f(0) is equal...

    Text Solution

    |

  18. Let y=f(x)=4x^(3)+2x-6, then the value of int(0)^(2)f(x)dx+int(0)^(30)...

    Text Solution

    |

  19. The value of int(1)^(3)(sqrt(1+(x-1)^(3))+(x^(2)-1)^(1/3)+1)dx is .

    Text Solution

    |

  20. The value of int(0)^(1)cos^(-1)((x-x^(2))-sqrt((1-x^(2))(2x-x^(2))))dx...

    Text Solution

    |