Home
Class 12
MATHS
Let y=f(x)=4x^(3)+2x-6, then the value o...

Let `y=f(x)=4x^(3)+2x-6`, then the value of `int_(0)^(2)f(x)dx+int_(0)^(30)f^(-1)(y)dy` is equal to _________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ \int_{0}^{2} f(x) \, dx + \int_{0}^{30} f^{-1}(y) \, dy \] where \( f(x) = 4x^3 + 2x - 6 \). ### Step 1: Evaluate \( \int_{0}^{2} f(x) \, dx \) First, we will compute the integral of \( f(x) \) from 0 to 2. \[ \int_{0}^{2} f(x) \, dx = \int_{0}^{2} (4x^3 + 2x - 6) \, dx \] Calculating this integral: \[ = \left[ \frac{4}{4}x^4 + \frac{2}{2}x^2 - 6x \right]_{0}^{2} \] \[ = \left[ x^4 + x^2 - 6x \right]_{0}^{2} \] Now, substituting the limits: \[ = \left[ 2^4 + 2^2 - 6 \cdot 2 \right] - \left[ 0^4 + 0^2 - 6 \cdot 0 \right] \] \[ = \left[ 16 + 4 - 12 \right] - 0 \] \[ = 16 + 4 - 12 = 8 \] ### Step 2: Evaluate \( \int_{0}^{30} f^{-1}(y) \, dy \) Using the property of inverse functions, we know that: \[ \int_{a}^{b} f^{-1}(y) \, dy = b f^{-1}(b) - a f^{-1}(a) - \int_{f^{-1}(a)}^{f^{-1}(b)} f(x) \, dx \] We need to find \( f^{-1}(0) \) and \( f^{-1}(30) \). #### Finding \( f^{-1}(0) \) Set \( f(x) = 0 \): \[ 4x^3 + 2x - 6 = 0 \] By testing \( x = 1 \): \[ 4(1)^3 + 2(1) - 6 = 4 + 2 - 6 = 0 \] Thus, \( f^{-1}(0) = 1 \). #### Finding \( f^{-1}(30) \) Set \( f(x) = 30 \): \[ 4x^3 + 2x - 6 = 30 \] This simplifies to: \[ 4x^3 + 2x - 36 = 0 \] By testing \( x = 2 \): \[ 4(2)^3 + 2(2) - 36 = 32 + 4 - 36 = 0 \] Thus, \( f^{-1}(30) = 2 \). Now substituting into the integral: \[ \int_{0}^{30} f^{-1}(y) \, dy = 30 \cdot f^{-1}(30) - 0 \cdot f^{-1}(0) - \int_{1}^{2} f(x) \, dx \] This simplifies to: \[ = 30 \cdot 2 - 0 - \int_{1}^{2} f(x) \, dx \] ### Step 3: Evaluate \( \int_{1}^{2} f(x) \, dx \) We already computed \( \int_{0}^{2} f(x) \, dx \) and can find \( \int_{1}^{2} f(x) \, dx \): \[ \int_{1}^{2} f(x) \, dx = \int_{0}^{2} f(x) \, dx - \int_{0}^{1} f(x) \, dx \] Calculating \( \int_{0}^{1} f(x) \, dx \): \[ \int_{0}^{1} (4x^3 + 2x - 6) \, dx = \left[ x^4 + x^2 - 6x \right]_{0}^{1} \] \[ = \left[ 1 + 1 - 6 \right] - 0 = -4 \] Thus: \[ \int_{1}^{2} f(x) \, dx = 8 - (-4) = 12 \] ### Step 4: Substitute back into the integral for \( f^{-1}(y) \) Now we can substitute back: \[ \int_{0}^{30} f^{-1}(y) \, dy = 30 \cdot 2 - 12 = 60 - 12 = 48 \] ### Step 5: Combine results Finally, we combine both integrals: \[ \int_{0}^{2} f(x) \, dx + \int_{0}^{30} f^{-1}(y) \, dy = 8 + 48 = 56 \] Thus, the final answer is: \[ \boxed{56} \]

To solve the given problem, we need to evaluate the expression: \[ \int_{0}^{2} f(x) \, dx + \int_{0}^{30} f^{-1}(y) \, dy \] where \( f(x) = 4x^3 + 2x - 6 \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to

Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b, "then " int_(0)^(a) f(x) dx +int_(0)^(b) f^(-1) (x) dx is equal to

If f(0)=0, f(3)=3 and f'(3)=4 , then the value of int_(0)^(1)xf'' (3x)dx is equal to

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

Let f(x) be a differentiable function symmetric about x=2 , then the value of int_(0)^(4)cos(pix)f'(x)dx is equal to________.

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

Suppose f is continuous on [a,b] & f(a)=f(b)=0 & int_(a)^(b)f^(2)(x)dx=1 then the minimum value of int_(a)^(0)(f^(')(x))^(2)dx int_(a)^(b) x^(2)f^(2)(x)dx is k , then 8k is

If f(0)=1,f(2)=3,f'(2)=5 ,then find the value of I_(1)=int_(0)^(1)xf''(2x)dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -NUMERICAL VALUE_TYPE
  1. The value of int(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is.

    Text Solution

    |

  2. Let f(x) be a differentiable function symmetric about x=2, then the va...

    Text Solution

    |

  3. Let f:[0,oo)->R be a continuous strictly increasing function, such tha...

    Text Solution

    |

  4. If f is continuous function and F(x)=int0^x((2t+3). intt^2 f(u)du)\ dt...

    Text Solution

    |

  5. If the value of the definite integral int0^1(sin^(-1)sqrt(x))/(x^2-x+1...

    Text Solution

    |

  6. Let f(x)=int(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x...

    Text Solution

    |

  7. Let g(x) be differentiable on R and int(sint)^1x^2g(x)dx=(1-sint), wh...

    Text Solution

    |

  8. If int0^oo x^(2n+1)\ e^(-x^2)\ dx=360, then the value of n is

    Text Solution

    |

  9. Let f(x) be a derivable function satisfying f(x)=int0^x e^t sin(x-t) ...

    Text Solution

    |

  10. Let f(x)=1/x^2 int4^x (4t^2-2f'(t))dt then find 9f'(4)

    Text Solution

    |

  11. If the value of the definite integral int0^1^(2007)C7x^(2000)dot(1-x)^...

    Text Solution

    |

  12. IfIn=int0^1(1-x^5)^n dx ,t h e n(55)/7(I(10))/(I(11)) is equal to

    Text Solution

    |

  13. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  14. L e tJ=int(-5)^(-4)(3-x^2)tan(3-x^2)dx and K=int(-2)^(-1)(6-6x+x^2) t...

    Text Solution

    |

  15. The value of the definite integral int(2-1)^(sqrt(2)+1)(x^4+x^2+2)/((x...

    Text Solution

    |

  16. Consider a real valued continuous function f such that f(x)=sinx + int...

    Text Solution

    |

  17. If f(x)=x+int0^1t(x+t)f(t)dt ,then the value of 23/2f(0) is equal...

    Text Solution

    |

  18. Let y=f(x)=4x^(3)+2x-6, then the value of int(0)^(2)f(x)dx+int(0)^(30)...

    Text Solution

    |

  19. The value of int(1)^(3)(sqrt(1+(x-1)^(3))+(x^(2)-1)^(1/3)+1)dx is .

    Text Solution

    |

  20. The value of int(0)^(1)cos^(-1)((x-x^(2))-sqrt((1-x^(2))(2x-x^(2))))dx...

    Text Solution

    |