Home
Class 12
MATHS
The value of int(1)^(3)(sqrt(1+(x-1)^(3)...

The value of `int_(1)^(3)(sqrt(1+(x-1)^(3))+(x^(2)-1)^(1/3)+1)dx` is __________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{1}^{3} \left( \sqrt{1 + (x - 1)^3} + (x^2 - 1)^{1/3} + 1 \right) dx \), we will follow these steps: ### Step 1: Define the function Let \( f(x) = \sqrt{1 + (x - 1)^3} + (x^2 - 1)^{1/3} + 1 \). ### Step 2: Find the inverse function To find the inverse function, we note that if we let \( y = f(x) \), then we can express \( x \) in terms of \( y \). However, for this problem, we will not explicitly find the inverse function but will use the property of definite integrals. ### Step 3: Use symmetry in the integral We can observe that \( f(x) \) and \( f(4 - x) \) might have a symmetric property that can simplify our calculations. We compute \( f(4 - x) \): \[ f(4 - x) = \sqrt{1 + (4 - x - 1)^3} + ((4 - x)^2 - 1)^{1/3} + 1 \] \[ = \sqrt{1 + (3 - x)^3} + ((16 - 8x + x^2) - 1)^{1/3} + 1 \] \[ = \sqrt{1 + (3 - x)^3} + (15 - 8x + x^2)^{1/3} + 1 \] ### Step 4: Combine the integrals Using the property of definite integrals, we can write: \[ \int_{1}^{3} f(x) \, dx + \int_{1}^{3} f(4 - x) \, dx = \int_{1}^{3} (f(x) + f(4 - x)) \, dx \] ### Step 5: Evaluate the integral Since \( f(x) + f(4 - x) \) simplifies to a constant, we can find the average value: \[ \int_{1}^{3} f(x) \, dx = \int_{1}^{3} f(4 - x) \, dx \] This means: \[ 2 \int_{1}^{3} f(x) \, dx = \int_{1}^{3} (f(x) + f(4 - x)) \, dx \] ### Step 6: Calculate \( f(1) \) and \( f(3) \) Now we calculate \( f(1) \) and \( f(3) \): - For \( f(1) \): \[ f(1) = \sqrt{1 + (1 - 1)^3} + (1^2 - 1)^{1/3} + 1 = \sqrt{1} + 0 + 1 = 2 \] - For \( f(3) \): \[ f(3) = \sqrt{1 + (3 - 1)^3} + (3^2 - 1)^{1/3} + 1 = \sqrt{1 + 8} + (9 - 1)^{1/3} + 1 = \sqrt{9} + 2 + 1 = 3 + 2 + 1 = 6 \] ### Step 7: Final calculation Using the average value: \[ \int_{1}^{3} f(x) \, dx = \frac{1}{2} \left( f(1) + f(3) \right) \cdot (3 - 1) \] \[ = \frac{1}{2} \left( 2 + 6 \right) \cdot 2 = \frac{8}{2} \cdot 2 = 4 \cdot 2 = 8 \] ### Final Answer Thus, the value of the integral is \( \boxed{8} \).

To solve the integral \( \int_{1}^{3} \left( \sqrt{1 + (x - 1)^3} + (x^2 - 1)^{1/3} + 1 \right) dx \), we will follow these steps: ### Step 1: Define the function Let \( f(x) = \sqrt{1 + (x - 1)^3} + (x^2 - 1)^{1/3} + 1 \). ### Step 2: Find the inverse function To find the inverse function, we note that if we let \( y = f(x) \), then we can express \( x \) in terms of \( y \). However, for this problem, we will not explicitly find the inverse function but will use the property of definite integrals. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1) (1)/(2x-3)dx is

int(1)/(sqrt(1-(3x+2)^(2)))dx

The value of int(1+logx)/(sqrt((x^(x))^(2)-1))dx " is "

Evaluate : int (1)/(sqrt((x-1)^(2)+3^(2)))dx

The value of int_(-1)^(1) {sqrt(1+x+x^(2))-sqrt(1-x+x^(2))}dx , is

The value of int_0^1 (x^(3))/(1+x^(8))dx is

The value of I=int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx is

Find the value of int_(0)^(1)root(3)(2x^(3)-3x^(2)-x+1)dx .

int_(1)^(2) (x^3+1) dx

The value of int_(-1)^(1)(sin^(-1)x+(x^(5)+x^(3)-1)/(cos^(2)x))dx is equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -NUMERICAL VALUE_TYPE
  1. The value of int(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is.

    Text Solution

    |

  2. Let f(x) be a differentiable function symmetric about x=2, then the va...

    Text Solution

    |

  3. Let f:[0,oo)->R be a continuous strictly increasing function, such tha...

    Text Solution

    |

  4. If f is continuous function and F(x)=int0^x((2t+3). intt^2 f(u)du)\ dt...

    Text Solution

    |

  5. If the value of the definite integral int0^1(sin^(-1)sqrt(x))/(x^2-x+1...

    Text Solution

    |

  6. Let f(x)=int(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x...

    Text Solution

    |

  7. Let g(x) be differentiable on R and int(sint)^1x^2g(x)dx=(1-sint), wh...

    Text Solution

    |

  8. If int0^oo x^(2n+1)\ e^(-x^2)\ dx=360, then the value of n is

    Text Solution

    |

  9. Let f(x) be a derivable function satisfying f(x)=int0^x e^t sin(x-t) ...

    Text Solution

    |

  10. Let f(x)=1/x^2 int4^x (4t^2-2f'(t))dt then find 9f'(4)

    Text Solution

    |

  11. If the value of the definite integral int0^1^(2007)C7x^(2000)dot(1-x)^...

    Text Solution

    |

  12. IfIn=int0^1(1-x^5)^n dx ,t h e n(55)/7(I(10))/(I(11)) is equal to

    Text Solution

    |

  13. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  14. L e tJ=int(-5)^(-4)(3-x^2)tan(3-x^2)dx and K=int(-2)^(-1)(6-6x+x^2) t...

    Text Solution

    |

  15. The value of the definite integral int(2-1)^(sqrt(2)+1)(x^4+x^2+2)/((x...

    Text Solution

    |

  16. Consider a real valued continuous function f such that f(x)=sinx + int...

    Text Solution

    |

  17. If f(x)=x+int0^1t(x+t)f(t)dt ,then the value of 23/2f(0) is equal...

    Text Solution

    |

  18. Let y=f(x)=4x^(3)+2x-6, then the value of int(0)^(2)f(x)dx+int(0)^(30)...

    Text Solution

    |

  19. The value of int(1)^(3)(sqrt(1+(x-1)^(3))+(x^(2)-1)^(1/3)+1)dx is .

    Text Solution

    |

  20. The value of int(0)^(1)cos^(-1)((x-x^(2))-sqrt((1-x^(2))(2x-x^(2))))dx...

    Text Solution

    |