Home
Class 12
MATHS
The value of int(0)^(1)cos^(-1)((x-x^(2)...

The value of `int_(0)^(1)cos^(-1)((x-x^(2))-sqrt((1-x^(2))(2x-x^(2))))dx` is equal to ___________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \cos^{-1} \left( x - x^2 - \sqrt{(1 - x^2)(2x - x^2)} \right) dx \), we can follow these steps: ### Step 1: Rewrite the Integral Let us denote the integral as: \[ I = \int_{0}^{1} \cos^{-1} \left( x - x^2 - \sqrt{(1 - x^2)(2x - x^2)} \right) dx \] ### Step 2: Simplifying the Argument of the Cosine Inverse We can rewrite the expression inside the cosine inverse: \[ x - x^2 - \sqrt{(1 - x^2)(2x - x^2)} \] We can factor out \( x(1-x) \) and simplify the square root term. ### Step 3: Use the Identity for Cosine Inverse Using the identity: \[ \cos^{-1}(A) + \cos^{-1}(B) = \cos^{-1}(AB - \sqrt{(1-A^2)(1-B^2)}) \] where \( A = x \) and \( B = 1 - x \). ### Step 4: Split the Integral Thus, we can express \( I \) as: \[ I = \int_{0}^{1} \cos^{-1}(x) dx + \int_{0}^{1} \cos^{-1}(1-x) dx \] Using the property of definite integrals, we know: \[ \int_{0}^{1} \cos^{-1}(1-x) dx = \int_{0}^{1} \cos^{-1}(x) dx \] So we can write: \[ I = 2 \int_{0}^{1} \cos^{-1}(x) dx \] ### Step 5: Change of Variables Now, we can change the variable by letting \( x = \cos(\theta) \): \[ dx = -\sin(\theta) d\theta \] The limits change from \( x = 0 \) to \( x = 1 \) which corresponds to \( \theta = \frac{\pi}{2} \) to \( \theta = 0 \). ### Step 6: Evaluate the Integral Thus, \[ I = 2 \int_{\frac{\pi}{2}}^{0} \theta (-\sin(\theta)) d\theta = 2 \int_{0}^{\frac{\pi}{2}} \theta \sin(\theta) d\theta \] ### Step 7: Integration by Parts Using integration by parts where \( u = \theta \) and \( dv = \sin(\theta) d\theta \): \[ du = d\theta, \quad v = -\cos(\theta) \] Thus, \[ \int \theta \sin(\theta) d\theta = -\theta \cos(\theta) + \int \cos(\theta) d\theta = -\theta \cos(\theta) + \sin(\theta) \] Evaluating from \( 0 \) to \( \frac{\pi}{2} \): \[ = \left[-\theta \cos(\theta) + \sin(\theta)\right]_{0}^{\frac{\pi}{2}} = \left[-\frac{\pi}{2} \cdot 0 + 1\right] - \left[0 + 0\right] = 1 \] ### Step 8: Final Calculation Thus, \[ I = 2 \cdot 1 = 2 \] The value of the integral is: \[ \boxed{2} \]

To solve the integral \( I = \int_{0}^{1} \cos^{-1} \left( x - x^2 - \sqrt{(1 - x^2)(2x - x^2)} \right) dx \), we can follow these steps: ### Step 1: Rewrite the Integral Let us denote the integral as: \[ I = \int_{0}^{1} \cos^{-1} \left( x - x^2 - \sqrt{(1 - x^2)(2x - x^2)} \right) dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int(x)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))))dx is equal to

int(1-x^(2))/((1+x^(2))sqrt(1+x^(4)))dx is equal to

The value of int _(-1)^(1) (x)/(sqrt(1-x^(2))). sin^(-1) (2xsqrt(1-x^(2)))dx is equal to

The value of int_(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

The value of int_(-1)^(1) {sqrt(1+x+x^(2))-sqrt(1-x+x^(2))}dx , is

int((x+1)^(2)dx)/(x(x^(2)+1)) is equal to

int_(0)^(1) (1)/(1+x+2x^(2))dx

The value of int_(0)^(1)(tan^(-1)((x)/(x+1)))/(tan^(-1)((1+2x-2x^(2))/(2)))dx is

int((x^(2)-1))/((x^(2)+1)sqrt(x^(4)+1))dx is equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -NUMERICAL VALUE_TYPE
  1. The value of int(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is.

    Text Solution

    |

  2. Let f(x) be a differentiable function symmetric about x=2, then the va...

    Text Solution

    |

  3. Let f:[0,oo)->R be a continuous strictly increasing function, such tha...

    Text Solution

    |

  4. If f is continuous function and F(x)=int0^x((2t+3). intt^2 f(u)du)\ dt...

    Text Solution

    |

  5. If the value of the definite integral int0^1(sin^(-1)sqrt(x))/(x^2-x+1...

    Text Solution

    |

  6. Let f(x)=int(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x...

    Text Solution

    |

  7. Let g(x) be differentiable on R and int(sint)^1x^2g(x)dx=(1-sint), wh...

    Text Solution

    |

  8. If int0^oo x^(2n+1)\ e^(-x^2)\ dx=360, then the value of n is

    Text Solution

    |

  9. Let f(x) be a derivable function satisfying f(x)=int0^x e^t sin(x-t) ...

    Text Solution

    |

  10. Let f(x)=1/x^2 int4^x (4t^2-2f'(t))dt then find 9f'(4)

    Text Solution

    |

  11. If the value of the definite integral int0^1^(2007)C7x^(2000)dot(1-x)^...

    Text Solution

    |

  12. IfIn=int0^1(1-x^5)^n dx ,t h e n(55)/7(I(10))/(I(11)) is equal to

    Text Solution

    |

  13. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  14. L e tJ=int(-5)^(-4)(3-x^2)tan(3-x^2)dx and K=int(-2)^(-1)(6-6x+x^2) t...

    Text Solution

    |

  15. The value of the definite integral int(2-1)^(sqrt(2)+1)(x^4+x^2+2)/((x...

    Text Solution

    |

  16. Consider a real valued continuous function f such that f(x)=sinx + int...

    Text Solution

    |

  17. If f(x)=x+int0^1t(x+t)f(t)dt ,then the value of 23/2f(0) is equal...

    Text Solution

    |

  18. Let y=f(x)=4x^(3)+2x-6, then the value of int(0)^(2)f(x)dx+int(0)^(30)...

    Text Solution

    |

  19. The value of int(1)^(3)(sqrt(1+(x-1)^(3))+(x^(2)-1)^(1/3)+1)dx is .

    Text Solution

    |

  20. The value of int(0)^(1)cos^(-1)((x-x^(2))-sqrt((1-x^(2))(2x-x^(2))))dx...

    Text Solution

    |