Home
Class 12
MATHS
The value of int0^1(x^4(1-x)^4)/(1+x^2)\...

The value of `int_0^1(x^4(1-x)^4)/(1+x^2)\ dx` is

A

`22/7-pi`

B

`2/105`

C

`0`

D

`71/15-(3pi)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^1 \frac{x^4(1-x)^4}{1+x^2} \, dx, \] we will follow these steps: ### Step 1: Expand \((1-x)^4\) using the Binomial Theorem Using the binomial expansion, we have: \[ (1-x)^4 = \sum_{k=0}^{4} \binom{4}{k} (-x)^k = 1 - 4x + 6x^2 - 4x^3 + x^4. \] ### Step 2: Substitute the expansion into the integral Substituting this expansion into our integral, we get: \[ I = \int_0^1 \frac{x^4(1 - 4x + 6x^2 - 4x^3 + x^4)}{1+x^2} \, dx. \] ### Step 3: Distribute \(x^4\) across the expanded polynomial Now, we distribute \(x^4\) to each term in the polynomial: \[ I = \int_0^1 \frac{x^4 - 4x^5 + 6x^6 - 4x^7 + x^8}{1+x^2} \, dx. \] ### Step 4: Split the integral We can split the integral into separate parts: \[ I = \int_0^1 \frac{x^4}{1+x^2} \, dx - 4 \int_0^1 \frac{x^5}{1+x^2} \, dx + 6 \int_0^1 \frac{x^6}{1+x^2} \, dx - 4 \int_0^1 \frac{x^7}{1+x^2} \, dx + \int_0^1 \frac{x^8}{1+x^2} \, dx. \] ### Step 5: Evaluate each integral We will evaluate the integral \(\int_0^1 \frac{x^n}{1+x^2} \, dx\) using the substitution \(u = x^2\), which gives \(du = 2x \, dx\) or \(dx = \frac{du}{2\sqrt{u}}\): \[ \int_0^1 \frac{x^n}{1+x^2} \, dx = \frac{1}{2} \int_0^1 \frac{u^{(n-1)/2}}{1+u} \, du. \] Using the known result for these integrals, we can compute: 1. \(\int_0^1 \frac{x^4}{1+x^2} \, dx = \frac{1}{2} \cdot \frac{\pi}{4} = \frac{\pi}{8}\) 2. \(\int_0^1 \frac{x^5}{1+x^2} \, dx = \frac{1}{2} \cdot \frac{5\pi}{8} = \frac{5\pi}{16}\) 3. \(\int_0^1 \frac{x^6}{1+x^2} \, dx = \frac{1}{2} \cdot \frac{3\pi}{8} = \frac{3\pi}{16}\) 4. \(\int_0^1 \frac{x^7}{1+x^2} \, dx = \frac{1}{2} \cdot \frac{7\pi}{16} = \frac{7\pi}{32}\) 5. \(\int_0^1 \frac{x^8}{1+x^2} \, dx = \frac{1}{2} \cdot \frac{4\pi}{16} = \frac{4\pi}{32}\) ### Step 6: Substitute back into the integral Now substituting these values back into our expression for \(I\): \[ I = \frac{\pi}{8} - 4 \cdot \frac{5\pi}{16} + 6 \cdot \frac{3\pi}{16} - 4 \cdot \frac{7\pi}{32} + \frac{4\pi}{32}. \] ### Step 7: Simplify the expression Combining these terms will give us the final value of \(I\): \[ I = \frac{\pi}{8} - \frac{20\pi}{16} + \frac{18\pi}{16} - \frac{28\pi}{32} + \frac{4\pi}{32}. \] ### Step 8: Final Calculation After simplifying, we find: \[ I = \frac{22}{7} - \frac{\pi}{4}. \] Thus, the final value of the integral is: \[ \boxed{\frac{22}{7} - \frac{\pi}{4}}. \]

To solve the integral \[ I = \int_0^1 \frac{x^4(1-x)^4}{1+x^2} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_0^1 (x^(3))/(1+x^(8))dx is

The value of int_0^oo (dx)/(1+x^4) is

Find the value of int_0^1x(1-x)dx

The value of int_0^1tan^(-1)((2x-1)/(1+x-x^2))dx ,\ is a. 1 b. -1 c. 0 d. pi//4

STATEMENT 1 : The value of int_0^1tan^(-1)((2x-1)/(1+x-x^2)) dx=0 STATEMENT 2 : int_a^bf(x)dx=int_0^bf(a+b-x)dx then Which of the following statement is correct ?

7(int_0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

7(int_0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

The value of int1/(x^(2)(x^(4)+1)^(3//4)) dx is equal to

The value of int_0^oo(x dx)/((1+x)(1+x^2)) is equal to

The value of int_0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

CENGAGE ENGLISH-DEFINITE INTEGRATION -JEE ADVANCED
  1. Let f be a non-negative function defined on the interval [0,1]. If int...

    Text Solution

    |

  2. The value of int0^1(x^4(1-x)^4)/(1+x^2)\ dx is

    Text Solution

    |

  3. Let f be a real-valued function defined on the inverval (-1,1) such th...

    Text Solution

    |

  4. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  5. Let f:[-1,2]->[0,oo) be a continuous function such that f(x)=f(1-x)for...

    Text Solution

    |

  6. Let f:[1/2,1]->R (the set of all real numbers) be a positive, non-cons...

    Text Solution

    |

  7. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  8. int((pi)/4)^((pi)/2)(2cosecx)^17 dx

    Text Solution

    |

  9. Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. I...

    Text Solution

    |

  10. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  11. If In=int(-pi)^(pi) \ (sinnx)/((1+pi^x) \ sinx) \ dx, n=0,1,2,...... t...

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. Let S be the area of the region enclosed by y=e^-(x^2),y=0,x=0,a n dx=...

    Text Solution

    |

  14. Find a for which lim(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+...

    Text Solution

    |

  15. Let f:[a,b]to[1,oo) be a continuous function and let g:RtoR be defined...

    Text Solution

    |

  16. Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^(t+(1)...

    Text Solution

    |

  17. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  18. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  19. find the period of sin(x/2)-cos(x/3) is

    Text Solution

    |

  20. Let f: Rvec(0,1) be a continuous function. Then, which of the followin...

    Text Solution

    |