Home
Class 12
MATHS
Let f be a real-valued function defined ...

Let `f` be a real-valued function defined on the inverval `(-1,1)` such that `e^(-x)f(x)=2+int_0^xsqrt(t^4+1)dt ,` for all, `x in (-1,1)a n dl e tf^(-1)` be the inverse function of `fdot` Then `(f^(-1))^'(2)` is equal to 1 (b) `1/3` (c) `1/2` (d) `1/e`

A

`1`

B

`1//3`

C

`1//2`

D

`1//e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( (f^{-1})'(2) \) given the function \( f \) defined by the equation: \[ e^{-x} f(x) = 2 + \int_0^x \sqrt{t^4 + 1} \, dt \] ### Step 1: Find \( f(0) \) First, we will evaluate \( f(0) \) by substituting \( x = 0 \) into the given equation: \[ e^{0} f(0) = 2 + \int_0^0 \sqrt{t^4 + 1} \, dt \] The integral from 0 to 0 is 0, so we have: \[ f(0) = 2 \] ### Step 2: Find \( f^{-1}(2) \) Since \( f(0) = 2 \), we can conclude that: \[ f^{-1}(2) = 0 \] ### Step 3: Differentiate the given equation Next, we differentiate both sides of the equation \( e^{-x} f(x) = 2 + \int_0^x \sqrt{t^4 + 1} \, dt \) with respect to \( x \): Using the product rule on the left side: \[ \frac{d}{dx}(e^{-x} f(x)) = -e^{-x} f(x) + e^{-x} f'(x) \] For the right side, we apply the Fundamental Theorem of Calculus: \[ \frac{d}{dx}\left(2 + \int_0^x \sqrt{t^4 + 1} \, dt\right) = \sqrt{x^4 + 1} \] Setting both sides equal gives us: \[ -e^{-x} f(x) + e^{-x} f'(x) = \sqrt{x^4 + 1} \] ### Step 4: Evaluate at \( x = 0 \) Now, we substitute \( x = 0 \): \[ -e^{0} f(0) + e^{0} f'(0) = \sqrt{0^4 + 1} \] This simplifies to: \[ -f(0) + f'(0) = 1 \] Since \( f(0) = 2 \): \[ -2 + f'(0) = 1 \] Thus: \[ f'(0) = 3 \] ### Step 5: Use the inverse function theorem From the inverse function theorem, we know: \[ (f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} \] Specifically, we need to find \( (f^{-1})'(2) \): \[ (f^{-1})'(2) = \frac{1}{f'(f^{-1}(2))} = \frac{1}{f'(0)} \] Substituting the value we found for \( f'(0) \): \[ (f^{-1})'(2) = \frac{1}{3} \] ### Final Answer Thus, the value of \( (f^{-1})'(2) \) is: \[ \boxed{\frac{1}{3}} \]

To solve the problem, we need to find the value of \( (f^{-1})'(2) \) given the function \( f \) defined by the equation: \[ e^{-x} f(x) = 2 + \int_0^x \sqrt{t^4 + 1} \, dt \] ### Step 1: Find \( f(0) \) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f be a real-valued function defined on the inverval (-1,1) such that e^(-x)f(x)=2+int_0^xsqrt(t^4+1)dt , for all, x in (-1,1)a n dl e tf^(-1) be the inverse function of fdot Then (f^(-1))^'(2) is equal to (a) 1 (b) 1/3 (c) 1/2 (d) 1/e

Let f be a non-negative function defined on the interval [0,1] . If int_0^xsqrt(1-(f^(prime)(t))^2)dt=int_0^xf(t)dt ,0lt=xlt=1,a n d \ f(0)=0 , then

Let f:R ->(0,oo) be a real valued function satisfying int_0^x tf(x-t) dt =e^(2x)-1 then find f(x) ?

Let f(x) be a real valued function defined for all xge1 , satistying f(1)=1 and f'(x)=1/(x^(2)+f(x)) , then lim_(xtooo)f(x)

Let f be a differentiable function on R and satisfying the integral equation x int_(0)^(x)f(t)dt-int_(0)^(x)tf(x-t)dt=e^(x)-1 AA x in R . Then f(1) equals to ___

If x!=1\ a n d\ f(x)=(x+1)/(x-1) is a real function, then f(f(f(2))) is (a) 1 (b) 2 (c) 3 (d) 4

Let f:[1,oo] be a differentiable function such that f(1)=2. If 6int_1^xf(t)dt=3xf(x)-x^3 for all xgeq1, then the value of f(2) is

Let f:[1,oo] be a differentiable function such that f(1)=2. If 6int_1^xf(t)dt=3xf(x)-x^3 for all xgeq1, then the value of f(2) is

Let agt1 be a real number and f(x)=log_(a)x^(2)" for "xgt 0. If f^(-1) is the inverse function fo f and b and c are real numbers then f^(-1)(b+c) is equal to

Let f(x) is a real valued function defined by f(x)=x^(2)+x^(2) int_(-1)^(1) tf(t) dt+x^(3) int_(-1)^(1)f(t) dt then which of the following hold (s) good?

CENGAGE ENGLISH-DEFINITE INTEGRATION -JEE ADVANCED
  1. Let f be a non-negative function defined on the interval [0,1]. If int...

    Text Solution

    |

  2. The value of int0^1(x^4(1-x)^4)/(1+x^2)\ dx is

    Text Solution

    |

  3. Let f be a real-valued function defined on the inverval (-1,1) such th...

    Text Solution

    |

  4. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  5. Let f:[-1,2]->[0,oo) be a continuous function such that f(x)=f(1-x)for...

    Text Solution

    |

  6. Let f:[1/2,1]->R (the set of all real numbers) be a positive, non-cons...

    Text Solution

    |

  7. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  8. int((pi)/4)^((pi)/2)(2cosecx)^17 dx

    Text Solution

    |

  9. Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. I...

    Text Solution

    |

  10. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  11. If In=int(-pi)^(pi) \ (sinnx)/((1+pi^x) \ sinx) \ dx, n=0,1,2,...... t...

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. Let S be the area of the region enclosed by y=e^-(x^2),y=0,x=0,a n dx=...

    Text Solution

    |

  14. Find a for which lim(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+...

    Text Solution

    |

  15. Let f:[a,b]to[1,oo) be a continuous function and let g:RtoR be defined...

    Text Solution

    |

  16. Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^(t+(1)...

    Text Solution

    |

  17. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  18. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  19. find the period of sin(x/2)-cos(x/3) is

    Text Solution

    |

  20. Let f: Rvec(0,1) be a continuous function. Then, which of the followin...

    Text Solution

    |