Home
Class 12
MATHS
The valued of int(sqrt(In2))^(sqrt(In3))...

The valued of `int_(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In 6-x^(2)))dx` is

A

`1/4 In 3/2`

B

`1/2 In 3/2`

C

`In 3/2`

D

`1/6 In 3/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\sqrt{\ln 2}}^{\sqrt{\ln 3}} \frac{x \sin(x^2)}{\sin(x^2) + \sin(\ln 6 - x^2)} \, dx, \] we will follow these steps: ### Step 1: Substitution Let \( x^2 = t \). Then, differentiating both sides gives \( 2x \, dx = dt \) or \( dx = \frac{dt}{2\sqrt{t}} \). ### Step 2: Change of Limits When \( x = \sqrt{\ln 2} \), \( t = \ln 2 \) and when \( x = \sqrt{\ln 3} \), \( t = \ln 3 \). ### Step 3: Rewrite the Integral Now substituting \( x^2 = t \) into the integral, we have: \[ I = \int_{\ln 2}^{\ln 3} \frac{\sqrt{t} \sin t}{\sin t + \sin(\ln 6 - t)} \cdot \frac{dt}{2\sqrt{t}} = \frac{1}{2} \int_{\ln 2}^{\ln 3} \frac{\sin t}{\sin t + \sin(\ln 6 - t)} \, dt. \] ### Step 4: Use the Property of Definite Integrals Using the property of definite integrals, we have: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \] In our case, let \( a = \ln 2 \) and \( b = \ln 3 \). Thus: \[ I = \frac{1}{2} \int_{\ln 2}^{\ln 3} \frac{\sin t}{\sin t + \sin(\ln 6 - t)} \, dt = \frac{1}{2} \int_{\ln 2}^{\ln 3} \frac{\sin(\ln 6 - t)}{\sin(\ln 6 - t) + \sin t} \, dt. \] ### Step 5: Adding the Two Integrals Now, adding the two integrals we have: \[ 2I = \frac{1}{2} \int_{\ln 2}^{\ln 3} \left( \frac{\sin t}{\sin t + \sin(\ln 6 - t)} + \frac{\sin(\ln 6 - t)}{\sin(\ln 6 - t) + \sin t} \right) dt. \] This simplifies to: \[ 2I = \frac{1}{2} \int_{\ln 2}^{\ln 3} 1 \, dt = \frac{1}{2} \cdot \left( \ln 3 - \ln 2 \right). \] ### Step 6: Solve for I Thus, we have: \[ 2I = \frac{1}{2} (\ln 3 - \ln 2) \implies I = \frac{1}{4} (\ln 3 - \ln 2) = \frac{1}{4} \ln \left( \frac{3}{2} \right). \] ### Final Answer Therefore, the value of the integral is \[ I = \frac{1}{4} \ln \left( \frac{3}{2} \right). \]

To solve the integral \[ I = \int_{\sqrt{\ln 2}}^{\sqrt{\ln 3}} \frac{x \sin(x^2)}{\sin(x^2) + \sin(\ln 6 - x^2)} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_(sqrt(ln2))^(sqrt(ln3))(xsinx^2)/(sinx^2+sin(ln6-x^2))dx is (A) 1/4 ln(3/2) (B) 1/2 ln(3/2) (C) ln(3/2) (D) 1/6ln(3/2)

The value of I=int_(0)^(pi//2)((sinx+cos)^(2))/(sqrt(1+sin2x))dx is

Evaluate: int(sqrt(cos2x))/(sinx)dx

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

int x^2 sinx^3 dx

The value of lim_(xto pi//4)((cosx+sinx)^(3)-2sqrt(2))/(1-sin2x) is

The value of I=int_(0)^(pi)x(sin^(2)(sinx)+cos^(2)(cosx))dx is

Evaluate: int(x-sinx)^(3/2)/sqrt(x){(6x^2sin^2(x/2))/(x-sinx)+3x}dx

The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

The value of sqrt(2)int(sinx)/(sin(x-(pi)/(4)))dx , is

CENGAGE ENGLISH-DEFINITE INTEGRATION -JEE ADVANCED
  1. The value of int0^1(x^4(1-x)^4)/(1+x^2)\ dx is

    Text Solution

    |

  2. Let f be a real-valued function defined on the inverval (-1,1) such th...

    Text Solution

    |

  3. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  4. Let f:[-1,2]->[0,oo) be a continuous function such that f(x)=f(1-x)for...

    Text Solution

    |

  5. Let f:[1/2,1]->R (the set of all real numbers) be a positive, non-cons...

    Text Solution

    |

  6. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  7. int((pi)/4)^((pi)/2)(2cosecx)^17 dx

    Text Solution

    |

  8. Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. I...

    Text Solution

    |

  9. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  10. If In=int(-pi)^(pi) \ (sinnx)/((1+pi^x) \ sinx) \ dx, n=0,1,2,...... t...

    Text Solution

    |

  11. about to only mathematics

    Text Solution

    |

  12. Let S be the area of the region enclosed by y=e^-(x^2),y=0,x=0,a n dx=...

    Text Solution

    |

  13. Find a for which lim(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+...

    Text Solution

    |

  14. Let f:[a,b]to[1,oo) be a continuous function and let g:RtoR be defined...

    Text Solution

    |

  15. Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^(t+(1)...

    Text Solution

    |

  16. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  17. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  18. find the period of sin(x/2)-cos(x/3) is

    Text Solution

    |

  19. Let f: Rvec(0,1) be a continuous function. Then, which of the followin...

    Text Solution

    |

  20. If Isum(k=1)^(98)intk^(k+1)(k+1)/(x(x+1))dx ,t h e n: (a) I<(49)/(50...

    Text Solution

    |