Home
Class 12
MATHS
Let f prime(x)=(192x^3)/(2+sin^4 pix) fo...

Let `f prime(x)=(192x^3)/(2+sin^4 pix)` for all `x in RR` with `f(1/2)=0.` If `mlt=int_(1/2)^1f(x)dxlt=M` then the possible values of m and M are (i) `m=13,M= 24` (ii)` m=1/4,M=1/2` (iii) `m=-11,M = 0` (iv) `m=1,M=12`

A

`m=13,M=24`

B

`m=1/4,M=1/2`

C

`m=-11,M=0`

D

`m=1,M=12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given derivative of the function: \[ f'(x) = \frac{192x^3}{2 + \sin^4(\pi x)} \] We also know that \( f\left(\frac{1}{2}\right) = 0 \). We need to find the integral \( m = \int_{\frac{1}{2}}^{1} f(x) \, dx \) and \( M \) such that \( m \leq \int_{\frac{1}{2}}^{1} f(x) \, dx \leq M \). ### Step 1: Establish bounds for \( f'(x) \) To find the bounds for \( f'(x) \), we evaluate it at the endpoints of the interval \( \left[\frac{1}{2}, 1\right] \). 1. **At \( x = \frac{1}{2} \)**: \[ f'\left(\frac{1}{2}\right) = \frac{192 \left(\frac{1}{2}\right)^3}{2 + \sin^4\left(\frac{\pi}{2}\right)} = \frac{192 \cdot \frac{1}{8}}{2 + 1} = \frac{24}{3} = 8 \] 2. **At \( x = 1 \)**: \[ f'(1) = \frac{192 \cdot 1^3}{2 + \sin^4(\pi)} = \frac{192}{2 + 0} = 96 \] Thus, we have: \[ 8 \leq f'(x) \leq 96 \quad \text{for } x \in \left[\frac{1}{2}, 1\right] \] ### Step 2: Integrate to find bounds for \( f(x) \) Now we integrate \( f'(x) \) over the interval \( \left[\frac{1}{2}, 1\right] \): 1. **Lower bound**: \[ \int_{\frac{1}{2}}^{1} f'(x) \, dx \geq \int_{\frac{1}{2}}^{1} 8 \, dx = 8 \left(1 - \frac{1}{2}\right) = 4 \] 2. **Upper bound**: \[ \int_{\frac{1}{2}}^{1} f'(x) \, dx \leq \int_{\frac{1}{2}}^{1} 96 \, dx = 96 \left(1 - \frac{1}{2}\right) = 48 \] ### Step 3: Relate \( f(x) \) to the bounds Using the Fundamental Theorem of Calculus, we have: \[ f(1) - f\left(\frac{1}{2}\right) = \int_{\frac{1}{2}}^{1} f'(x) \, dx \] Since \( f\left(\frac{1}{2}\right) = 0 \): \[ f(1) = \int_{\frac{1}{2}}^{1} f'(x) \, dx \] Thus, we have: \[ 4 \leq f(1) \leq 48 \] ### Step 4: Determine possible values of \( m \) and \( M \) From our calculations: - The lower bound \( m \) is \( 4 \). - The upper bound \( M \) is \( 48 \). ### Conclusion Now we compare these values with the options given in the question: - (i) \( m = 13, M = 24 \) - (ii) \( m = \frac{1}{4}, M = \frac{1}{2} \) - (iii) \( m = -11, M = 0 \) - (iv) \( m = 1, M = 12 \) None of the provided options match our calculated bounds of \( m = 4 \) and \( M = 48 \). ### Final Answer The possible values of \( m \) and \( M \) based on the calculations are \( m = 4 \) and \( M = 48 \).

To solve the problem, we start with the given derivative of the function: \[ f'(x) = \frac{192x^3}{2 + \sin^4(\pi x)} \] We also know that \( f\left(\frac{1}{2}\right) = 0 \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f^(prime)(x)=(192 x^3)/(2+sin^4pix)fora l lx in Rw i t hf(1/2)=0.Ifmlt=int_(1/2)^1f(x)dxlt=M , then the possible values of ma n dM are (a) m=13 ,M=24 (b) m=1/4,M=1/2 (c) m=-11 ,M=0 (d) m=1,M=12

Let f(x)=(mx^2+3x+4)/(x^(2)+3x+4) , m in R . If f(x) lt 5 for all x in R then the possible set of values of m is :

Let x+(1)/(x)=2, y+(1)/(y)=-2 and sin^(-1)x+cos^(-1)y=m pi , then the value of m is

Function f is defined by f(x)=2x+1 . If 2f(m)=30 , what is the value of f(2m) ?

Let M be the maximum and m be the minimum value of |2/(3+i e^(itheta))| , then (a)M=2 (b) M=1 m=1/4 (d) m=1/2

If I(m) = int_0^pi ln(1-2m cos x + m^2)dx , then I(1)=

If (m_i,1/m_i),i=1,2,3,4 are concyclic points then the value of m_1m_2m_3m_4 is

Given that f(x) = (4-7x)/((3x+4)) , I = Lim_(x to 2 ) f(x) and m = Lim_(x to 0) f(x) , form the equation whose are 1/l , 1/m

Let f(x)=(1+b^2)x^2+2b x+1 and let m(b) the minimum value of f(x) as b varies, the range of m(b) is (A) [0,1] (B) (0,1/2] (C) [1/2,1] (D) (0,1]

Let f(x)=x^(2)+ax+b be a quadratic polynomial in which a and b are integers. If for a given integer n, f(n) f(n+1)=f(m) for some integer m, then the value of m is

CENGAGE ENGLISH-DEFINITE INTEGRATION -JEE ADVANCED
  1. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  2. int((pi)/4)^((pi)/2)(2cosecx)^17 dx

    Text Solution

    |

  3. Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. I...

    Text Solution

    |

  4. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  5. If In=int(-pi)^(pi) \ (sinnx)/((1+pi^x) \ sinx) \ dx, n=0,1,2,...... t...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. Let S be the area of the region enclosed by y=e^-(x^2),y=0,x=0,a n dx=...

    Text Solution

    |

  8. Find a for which lim(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+...

    Text Solution

    |

  9. Let f:[a,b]to[1,oo) be a continuous function and let g:RtoR be defined...

    Text Solution

    |

  10. Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^(t+(1)...

    Text Solution

    |

  11. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  12. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  13. find the period of sin(x/2)-cos(x/3) is

    Text Solution

    |

  14. Let f: Rvec(0,1) be a continuous function. Then, which of the followin...

    Text Solution

    |

  15. If Isum(k=1)^(98)intk^(k+1)(k+1)/(x(x+1))dx ,t h e n: (a) I<(49)/(50...

    Text Solution

    |

  16. If g(x)=int(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(...

    Text Solution

    |

  17. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  18. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  19. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  20. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |