Home
Class 12
MATHS
Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(...

Evaluate: `int_(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx`

A

`(pi^(2))/4-2`

B

`(pi^(2))/4+2`

C

`pi^(2)-e^((pi)/2)`

D

`pi^(2)+e^(pi)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1 + e^x} \, dx, \] we will use the technique of symmetry and substitution. ### Step 1: Define the integral Let \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1 + e^x} \, dx. \] ### Step 2: Substitute \(x\) with \(-x\) Now, we will evaluate \(I\) by substituting \(x\) with \(-x\): \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(-x)^2 \cos(-x)}{1 + e^{-x}} \, dx. \] Since \((-x)^2 = x^2\) and \(\cos(-x) = \cos x\), we can rewrite the integral as: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1 + \frac{1}{e^x}} \, dx. \] ### Step 3: Simplify the denominator The denominator can be simplified: \[ 1 + \frac{1}{e^x} = \frac{e^x + 1}{e^x}. \] Thus, we have: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x \cdot e^x}{e^x + 1} \, dx. \] ### Step 4: Combine the two expressions for \(I\) Now we have two expressions for \(I\): 1. \(I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1 + e^x} \, dx\) 2. \(I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x \cdot e^x}{e^x + 1} \, dx\) Adding these two expressions gives: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \cos x \, dx. \] ### Step 5: Solve for \(I\) Thus, we can express \(I\) as: \[ I = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \cos x \, dx. \] ### Step 6: Evaluate the integral \(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \cos x \, dx\) To evaluate this integral, we can use integration by parts. Let: - \(u = x^2\) and \(dv = \cos x \, dx\) Then, we have: - \(du = 2x \, dx\) - \(v = \sin x\) Using integration by parts: \[ \int u \, dv = uv - \int v \, du, \] we get: \[ \int x^2 \cos x \, dx = x^2 \sin x \bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} - \int 2x \sin x \, dx. \] Evaluating \(x^2 \sin x\) at the limits: \[ \left( \frac{\pi^2}{4} \sin\left(\frac{\pi}{2}\right) - \left(-\frac{\pi^2}{4}\right) \sin\left(-\frac{\pi}{2}\right) \right) = \frac{\pi^2}{4} - \left(-\frac{\pi^2}{4}\right) = \frac{\pi^2}{2}. \] Now, we need to evaluate \(\int 2x \sin x \, dx\) using integration by parts again. Let: - \(u = 2x\) and \(dv = \sin x \, dx\) Then: - \(du = 2 \, dx\) - \(v = -\cos x\) So, \[ \int 2x \sin x \, dx = -2x \cos x \bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \int 2 \cos x \, dx. \] Evaluating \(-2x \cos x\) at the limits gives \(0\) (since \(\cos(\pm \frac{\pi}{2}) = 0\)). Now, \[ \int 2 \cos x \, dx = 2 \sin x \bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 2(1 - (-1)) = 4. \] Putting it all together: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \cos x \, dx = \frac{\pi^2}{2} - 4. \] ### Step 7: Final calculation for \(I\) Thus, \[ I = \frac{1}{2} \left( \frac{\pi^2}{2} - 4 \right) = \frac{\pi^2}{4} - 2. \] ### Final Answer The value of the integral is: \[ \boxed{\frac{\pi^2}{4} - 2}. \]

To evaluate the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1 + e^x} \, dx, \] we will use the technique of symmetry and substitution. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(-pi//2)^(pi//2)(cosx)/(1+e^x)dx

Evaluate: int_(-pi//2)^(pi//2)(xsinx)/(e^x+1)dx

Evaluate : int_(-pi/2)^(pi/2)(cosx)/(1+e^x)dx

Evaluate: int_(-pi//4)^(pi//4)(sec^2x)/(1+e^x)dx

Evaluate: int_(-pi//4)^(pi//4)(sec^2x)/(1+e^x)dx

Evaluate: int_(-pi//2)^(pi//2)sin^2x\ dx

Evaluate: int_(-pi//2)^(pi//2)sin^7x dx

Evaluate: int_(-pi//2)^(pi//2)log(sinx+cosx)dx

Evaluate of each of the following integral: int_(-pi//2)^(pi//2)(cos^2x)/(1+e^x)dx

Evaluate: int_(-pi//2)^(pi//2) sqrt(cosx-cos^3x) dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -JEE ADVANCED
  1. int((pi)/4)^((pi)/2)(2cosecx)^17 dx

    Text Solution

    |

  2. Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. I...

    Text Solution

    |

  3. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  4. If In=int(-pi)^(pi) \ (sinnx)/((1+pi^x) \ sinx) \ dx, n=0,1,2,...... t...

    Text Solution

    |

  5. about to only mathematics

    Text Solution

    |

  6. Let S be the area of the region enclosed by y=e^-(x^2),y=0,x=0,a n dx=...

    Text Solution

    |

  7. Find a for which lim(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+...

    Text Solution

    |

  8. Let f:[a,b]to[1,oo) be a continuous function and let g:RtoR be defined...

    Text Solution

    |

  9. Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^(t+(1)...

    Text Solution

    |

  10. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  11. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  12. find the period of sin(x/2)-cos(x/3) is

    Text Solution

    |

  13. Let f: Rvec(0,1) be a continuous function. Then, which of the followin...

    Text Solution

    |

  14. If Isum(k=1)^(98)intk^(k+1)(k+1)/(x(x+1))dx ,t h e n: (a) I<(49)/(50...

    Text Solution

    |

  15. If g(x)=int(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(...

    Text Solution

    |

  16. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  17. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  18. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  19. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  20. Match the terms given in Column I with the compound given in Column II...

    Text Solution

    |