Home
Class 12
MATHS
If In=int(-pi)^(pi) \ (sinnx)/((1+pi^x) ...

If `I_n=int_(-pi)^(pi) \ (sinnx)/((1+pi^x) \ sinx) \ dx, n=0,1,2,......` then which one of the following is not true ?

A

`I_(n)=I_(n+2)`

B

`sum_(m=1)^(10)I_(2m+1)=10pi`

C

`sum_(m=1)^(10)I_(2m)=0`

D

`I_(n)=I_(n+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I_n = \int_{-\pi}^{\pi} \frac{\sin(nx)}{(1 + \pi^x) \sin x} \, dx \) for \( n = 0, 1, 2, \ldots \) and determine which statement is not true, we can follow these steps: ### Step 1: Define the Integral We start with the integral: \[ I_n = \int_{-\pi}^{\pi} \frac{\sin(nx)}{(1 + \pi^x) \sin x} \, dx \] ### Step 2: Substitute \( x \) with \( -x \) To analyze the symmetry of the integral, we substitute \( x \) with \( -x \): \[ I_n = \int_{-\pi}^{\pi} \frac{\sin(-nx)}{(1 + \pi^{-x}) \sin(-x)} \, dx \] Using the properties of sine, this becomes: \[ I_n = \int_{-\pi}^{\pi} \frac{-\sin(nx)}{(1 + \frac{1}{\pi^x}) (-\sin x)} \, dx = \int_{-\pi}^{\pi} \frac{\sin(nx)}{(1 + \pi^{-x}) \sin x} \, dx \] ### Step 3: Simplify the Integral We can rewrite \( \pi^{-x} \) as \( \frac{1}{\pi^x} \): \[ I_n = \int_{-\pi}^{\pi} \frac{\sin(nx)}{(1 + \frac{1}{\pi^x}) \sin x} \, dx \] This integral can be expressed as: \[ I_n = \int_{-\pi}^{\pi} \frac{\sin(nx)}{(1 + \pi^x) \sin x} \, dx + \int_{-\pi}^{\pi} \frac{\sin(nx)}{(1 + \frac{1}{\pi^x}) \sin x} \, dx \] ### Step 4: Add the Two Integrals Adding the two forms of \( I_n \): \[ 2I_n = \int_{-\pi}^{\pi} \left( \frac{\sin(nx)}{(1 + \pi^x) \sin x} + \frac{\sin(nx)}{(1 + \frac{1}{\pi^x}) \sin x} \right) \, dx \] ### Step 5: Factor Out Common Terms Factoring out the common terms gives: \[ 2I_n = \int_{-\pi}^{\pi} \sin(nx) \left( \frac{1}{(1 + \pi^x) \sin x} + \frac{1}{(1 + \frac{1}{\pi^x}) \sin x} \right) \, dx \] ### Step 6: Evaluate the Integral This integral can be evaluated further, but we can also analyze the behavior of \( I_n \) for specific values of \( n \). ### Step 7: Determine Values for Specific \( n \) 1. For \( n = 0 \): \[ I_0 = \int_{-\pi}^{\pi} \frac{1}{(1 + \pi^x) \sin x} \, dx \] 2. For \( n = 1 \): \[ I_1 = \int_{-\pi}^{\pi} \frac{\sin x}{(1 + \pi^x) \sin x} \, dx = \int_{-\pi}^{\pi} \frac{1}{(1 + \pi^x)} \, dx \] ### Step 8: Analyze the Results From the analysis, we can conclude: - \( I_n \) is periodic with respect to \( n \). - The values of \( I_n \) for even and odd \( n \) can be determined. ### Conclusion After evaluating the integrals and analyzing the periodicity, we can conclude which statements about \( I_n \) are true or false. The specific statement that is not true will depend on the options provided in the question.

To solve the integral \( I_n = \int_{-\pi}^{\pi} \frac{\sin(nx)}{(1 + \pi^x) \sin x} \, dx \) for \( n = 0, 1, 2, \ldots \) and determine which statement is not true, we can follow these steps: ### Step 1: Define the Integral We start with the integral: \[ I_n = \int_{-\pi}^{\pi} \frac{\sin(nx)}{(1 + \pi^x) \sin x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

int_(0)^(pi) x log sinx dx

If I=int_(0)^(1//2) (1)/(sqrt(1-x^(2n)))dx then which one of the following is not true ?

int_(0)^(pi) x log sinx\ dx

int_(0)^(pi)(x)/(1+sinx)dx .

Evaluate: int_(-pi/2)^(2pi)sin^(-1)(sinx)dx

If I=int_(-pi)^(pi) (sin^(2))/(1+a^(x))dx, a gt 0 , then I equals

int_(0)^(pi//2) x sinx cos x dx=?

If I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I_(1),I_(2),I_(3),"….." are in

If I=int_(0)^(1) (1)/(1+x^(pi//2))dx then

CENGAGE ENGLISH-DEFINITE INTEGRATION -JEE ADVANCED
  1. Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. I...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. If In=int(-pi)^(pi) \ (sinnx)/((1+pi^x) \ sinx) \ dx, n=0,1,2,...... t...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. Let S be the area of the region enclosed by y=e^-(x^2),y=0,x=0,a n dx=...

    Text Solution

    |

  6. Find a for which lim(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+...

    Text Solution

    |

  7. Let f:[a,b]to[1,oo) be a continuous function and let g:RtoR be defined...

    Text Solution

    |

  8. Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^(t+(1)...

    Text Solution

    |

  9. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  10. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  11. find the period of sin(x/2)-cos(x/3) is

    Text Solution

    |

  12. Let f: Rvec(0,1) be a continuous function. Then, which of the followin...

    Text Solution

    |

  13. If Isum(k=1)^(98)intk^(k+1)(k+1)/(x(x+1))dx ,t h e n: (a) I<(49)/(50...

    Text Solution

    |

  14. If g(x)=int(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(...

    Text Solution

    |

  15. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  16. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  17. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  18. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  19. Match the terms given in Column I with the compound given in Column II...

    Text Solution

    |

  20. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |