Home
Class 12
MATHS
Find a for which lim(n->oo) (1^a+2^a+3^a...

Find `a` for which `lim_(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+(na+2)+...+(na+n)])=1/60`

A

5

B

7

C

`(-15)/2`

D

`(-17)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \) such that \[ \lim_{n \to \infty} \frac{1^a + 2^a + 3^a + \ldots + n^a}{(n+1)^{a-1} \left( (na+1) + (na+2) + \ldots + (na+n) \right)} = \frac{1}{60} \] ### Step 1: Rewrite the numerator The numerator can be expressed as a summation: \[ 1^a + 2^a + 3^a + \ldots + n^a = \sum_{r=1}^{n} r^a \] ### Step 2: Simplify the denominator The denominator can be simplified by factoring out \( n \): \[ (na + 1) + (na + 2) + \ldots + (na + n) = n \left( a + \frac{1}{n} + \frac{2}{n} + \ldots + 1 \right) = n \left( a + \frac{1}{n} \sum_{k=1}^{n} k \right) \] Using the formula for the sum of the first \( n \) natural numbers, we have: \[ \sum_{k=1}^{n} k = \frac{n(n+1)}{2} \] Thus, the denominator becomes: \[ (n+1)^{a-1} \cdot n \left( a + \frac{1}{n} \cdot \frac{n(n+1)}{2} \right) = (n+1)^{a-1} \cdot n \left( a + \frac{(n+1)}{2} \right) \] ### Step 3: Analyze the limit Now we can rewrite the limit: \[ \lim_{n \to \infty} \frac{\sum_{r=1}^{n} r^a}{(n+1)^{a-1} \cdot n \left( a + \frac{(n+1)}{2} \right)} \] ### Step 4: Apply asymptotic behavior Using the asymptotic behavior of the summation \( \sum_{r=1}^{n} r^a \sim \frac{n^{a+1}}{a+1} \) as \( n \to \infty \): \[ \lim_{n \to \infty} \frac{\frac{n^{a+1}}{a+1}}{(n+1)^{a-1} \cdot n \left( a + \frac{n}{2} \right)} \] ### Step 5: Simplify further As \( n \to \infty \): \[ (n+1)^{a-1} \sim n^{a-1} \] Thus, we have: \[ \lim_{n \to \infty} \frac{\frac{n^{a+1}}{a+1}}{n^{a-1} \cdot n \left( a + \frac{n}{2} \right)} = \lim_{n \to \infty} \frac{n^{a+1}}{(a+1) n^{a} \left( a + \frac{n}{2} \right)} \] This simplifies to: \[ \lim_{n \to \infty} \frac{1}{(a+1) \left( a + \frac{n}{2} \right)} = \frac{1}{60} \] ### Step 6: Solve for \( a \) Setting the limit equal to \( \frac{1}{60} \): \[ \frac{1}{(a+1) \left( a + \frac{n}{2} \right)} = \frac{1}{60} \] As \( n \to \infty \), we can ignore \( a \) in the denominator: \[ \frac{1}{(a+1) \cdot \frac{n}{2}} = \frac{1}{60} \] This gives us: \[ (a+1) \cdot \frac{n}{2} = 60 \] ### Step 7: Rearranging gives a quadratic equation Rearranging leads to: \[ 2(a+1) = 60 \implies a + 1 = 30 \implies a = 29 \] ### Step 8: Verify the solution To verify, we can substitute \( a = 29 \) back into our limit and check if it holds true. ### Final Answer Thus, the value of \( a \) is: \[ \boxed{29} \]

To solve the problem, we need to find the value of \( a \) such that \[ \lim_{n \to \infty} \frac{1^a + 2^a + 3^a + \ldots + n^a}{(n+1)^{a-1} \left( (na+1) + (na+2) + \ldots + (na+n) \right)} = \frac{1}{60} \] ### Step 1: Rewrite the numerator The numerator can be expressed as a summation: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

lim_(n->oo)(1^2+2^2+3^2+..........+n^2)/n^3

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

Find the value of lim_(n->oo) (1+2+3+.......+n)/n^2

The value of lim_(n->oo) n^(1/n)

lim_(n->oo)2^(n-1)sin(a/2^n)

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

7. lim_(n->oo) (2^(1/n)-1)/(2^(1/n)+1)

Prove that lim_(n->oo)(1+1/n)^n=e

Evaluate the following limit: (lim)_(n->oo)(1^3+2^3+ n^3)/((n-1)^4)

lim_(n to oo){(1^(m)+2^(m)+3^(m)+...+ n^(m))/(n^(m+1))} equals

CENGAGE ENGLISH-DEFINITE INTEGRATION -JEE ADVANCED
  1. about to only mathematics

    Text Solution

    |

  2. Let S be the area of the region enclosed by y=e^-(x^2),y=0,x=0,a n dx=...

    Text Solution

    |

  3. Find a for which lim(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+...

    Text Solution

    |

  4. Let f:[a,b]to[1,oo) be a continuous function and let g:RtoR be defined...

    Text Solution

    |

  5. Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^(t+(1)...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  8. find the period of sin(x/2)-cos(x/3) is

    Text Solution

    |

  9. Let f: Rvec(0,1) be a continuous function. Then, which of the followin...

    Text Solution

    |

  10. If Isum(k=1)^(98)intk^(k+1)(k+1)/(x(x+1))dx ,t h e n: (a) I<(49)/(50...

    Text Solution

    |

  11. If g(x)=int(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(...

    Text Solution

    |

  12. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  13. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  14. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  15. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  16. Match the terms given in Column I with the compound given in Column II...

    Text Solution

    |

  17. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |

  18. Let y^(prime)(x)+y(x)g^(prime)(x)=g(x)g^(prime)(x),y(0),x in R , wher...

    Text Solution

    |

  19. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  20. Let f: R rarr R be a continuous odd function, which vanishes exactly a...

    Text Solution

    |