Home
Class 12
MATHS
Let f:(0,oo) in R be given f(x)=overse...

Let `f:(0,oo) in R` be given
`f(x)=overset(x)underset(1//x)int e^(t+(1)/(t))(1)/(t)dt`, then

A

`f(x)` is monotonically increasing on`[1,oo)`

B

`f(x)` is monotonocally decreasing on`(0,1)`

C

`f(x)+f(1/x)=0`, for all `x epsilon (0,oo)`

D

`f(2^(x))` is an odd function of `x` on `R`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will analyze the function defined by the integral and differentiate it to determine its properties. ### Step 1: Define the function We start with the function defined as: \[ f(x) = \int_{1/x}^{x} e^{t + \frac{1}{t}} \frac{1}{t} dt \] ### Step 2: Differentiate the function To analyze the behavior of \( f(x) \), we will differentiate it with respect to \( x \) using the Leibniz rule for differentiation under the integral sign: \[ f'(x) = \frac{d}{dx} \left( \int_{1/x}^{x} e^{t + \frac{1}{t}} \frac{1}{t} dt \right) \] Using the Leibniz rule: \[ f'(x) = e^{x + \frac{1}{x}} \cdot \frac{1}{x} - e^{1/x + x} \cdot \left(-\frac{1}{x^2}\right) \] This simplifies to: \[ f'(x) = e^{x + \frac{1}{x}} \cdot \frac{1}{x} + e^{1/x + x} \cdot \frac{1}{x^2} \] ### Step 3: Analyze the derivative Both terms in \( f'(x) \) are positive for \( x > 0 \): - \( e^{x + \frac{1}{x}} > 0 \) - \( \frac{1}{x} > 0 \) - \( e^{1/x + x} > 0 \) - \( \frac{1}{x^2} > 0 \) Thus, we conclude: \[ f'(x) > 0 \quad \text{for } x > 0 \] This indicates that \( f(x) \) is a monotonically increasing function on the interval \( (0, \infty) \). ### Step 4: Evaluate \( f(x) + f(1/x) \) Next, we compute \( f(1/x) \): \[ f\left(\frac{1}{x}\right) = \int_{x}^{1/x} e^{t + \frac{1}{t}} \frac{1}{t} dt \] By changing the limits of integration, we have: \[ f\left(\frac{1}{x}\right) = -\int_{1/x}^{x} e^{t + \frac{1}{t}} \frac{1}{t} dt = -f(x) \] Thus: \[ f(x) + f(1/x) = f(x) - f(x) = 0 \] ### Step 5: Conclusion From the analysis, we have established: 1. \( f(x) \) is monotonically increasing on \( (0, \infty) \). 2. \( f(x) + f(1/x) = 0 \). ### Final Result The properties of the function \( f(x) \) are: - \( f(x) \) is monotonically increasing. - \( f(x) + f(1/x) = 0 \).

To solve the given problem step by step, we will analyze the function defined by the integral and differentiate it to determine its properties. ### Step 1: Define the function We start with the function defined as: \[ f(x) = \int_{1/x}^{x} e^{t + \frac{1}{t}} \frac{1}{t} dt \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)=overset(x)underset(0)int(sint)/(t)dt,xgt0, then

If F(x) =(1)/(x^(2))overset(x)underset(4)int [4t^(2)-2F'(t)]dt then F'(4) equals

Let f:(0,oo)vecR be given by f(x)=int_(1/x)^x(e^(-(t+1/t))dt)/t , then (a) f(x) is monotonically increasing on [1,oo) (b) f(x) is monotonically decreasing on (0,1) (c) f(2^x) is an odd function of x on R (d) none of these.

The poins of extremum of phi(x)=underset(1)overset(x)inte^(-t^(2)//2) (1-t^(2))dt are

The value of overset(sin^(2)x)underset(0)int sin^(-1)sqrt(t)dt+overset(cos^(2)x)underset(0)int cos^(-1)sqrt(t)dt , is

If y = underset(u(x))overset(v(x))intf(t) dt , let us define (dy)/(dx) in a different manner as (dy)/(dx) = v'(x) f^(2)(v(x)) - u'(x) f^(2)(u(x)) alnd the equation of the tangent at (a,b) as y -b = (dy/dx)_((a,b)) (x-a) If F(x) = underset(1)overset(x)inte^(t^(2)//2)(1-t^(2))dt , then d/(dx) F(x) at x = 1 is

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

Let g(t) = underset(x_(1))overset(x_(2))intf(t,x) dx . Then g'(t) = underset(x_(1))overset(x_(2))int(del)/(delt) (f(t,x))dx , Consider f(x) = underset(0)overset(pi)int (ln(1+xcostheta))/(costheta) d theta . The number of critical point of f(x) , in the interior of its domain, is

The set of critical pionts of the fuction f(x) given by f(x)= x - log _(e)x+underset(2)overset(x)((1)/(t)-2-2cos 4t)dt is

Let F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt on [0,(pi)/(2)] , then

CENGAGE ENGLISH-DEFINITE INTEGRATION -JEE ADVANCED
  1. Find a for which lim(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+...

    Text Solution

    |

  2. Let f:[a,b]to[1,oo) be a continuous function and let g:RtoR be defined...

    Text Solution

    |

  3. Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^(t+(1)...

    Text Solution

    |

  4. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  5. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  6. find the period of sin(x/2)-cos(x/3) is

    Text Solution

    |

  7. Let f: Rvec(0,1) be a continuous function. Then, which of the followin...

    Text Solution

    |

  8. If Isum(k=1)^(98)intk^(k+1)(k+1)/(x(x+1))dx ,t h e n: (a) I<(49)/(50...

    Text Solution

    |

  9. If g(x)=int(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(...

    Text Solution

    |

  10. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  11. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  12. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  13. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  14. Match the terms given in Column I with the compound given in Column II...

    Text Solution

    |

  15. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |

  16. Let y^(prime)(x)+y(x)g^(prime)(x)=g(x)g^(prime)(x),y(0),x in R , wher...

    Text Solution

    |

  17. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  18. Let f: R rarr R be a continuous odd function, which vanishes exactly a...

    Text Solution

    |

  19. If alpha=int0^1(e^(9x+3tan^(-1)x))((12+9x^2)/(1+x^2))dx where tan^(-1)...

    Text Solution

    |

  20. Let F(x)=intx^[x^2+pi/6](2cos^2t)dt for all x in R and f:[0,1/2] -> [0...

    Text Solution

    |