Home
Class 12
MATHS
Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x...

Let `f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x` for all `x in (-pi/2,pi/2)` . Then the correct expression (s) is (are) (a) `int_0^(pi/4)xf(x)dx=1/(12)` (b) `int_0^(pi/4)f(x)dx=0` (c) `int_0^(pi/4)xf(x)=1/6` (d) `int_0^(pi/4)f(x)dx=1/(12)`

A

`int_(0)^(pi//4)xf(x)dx=1/12`

B

`int_(0)^(pi//4)f(x)dx=0`

C

`int_(0)^(pi//4)xf(x)=1/6`

D

`int_(0)^(pi//4)f(x)dx=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals given in the options based on the function \( f(x) = 7\tan^8 x + 7\tan^6 x - 3\tan^4 x - 3\tan^2 x \). ### Step 1: Simplify the Function We start with the function: \[ f(x) = 7\tan^8 x + 7\tan^6 x - 3\tan^4 x - 3\tan^2 x \] We can factor this expression: \[ f(x) = 7\tan^6 x (\tan^2 x + 1) - 3\tan^2 x (\tan^2 x + 1) \] Recognizing that \( \tan^2 x + 1 = \sec^2 x \), we rewrite it as: \[ f(x) = (7\tan^6 x - 3\tan^2 x) \sec^2 x \] ### Step 2: Evaluate the Integral \( \int_0^{\pi/4} f(x) \, dx \) We need to calculate: \[ \int_0^{\pi/4} f(x) \, dx = \int_0^{\pi/4} (7\tan^6 x - 3\tan^2 x) \sec^2 x \, dx \] Using the substitution \( t = \tan x \), we have \( \sec^2 x \, dx = dt \). The limits change as follows: - When \( x = 0 \), \( t = \tan(0) = 0 \) - When \( x = \frac{\pi}{4} \), \( t = \tan\left(\frac{\pi}{4}\right) = 1 \) Thus, the integral becomes: \[ \int_0^1 (7t^6 - 3t^2) \, dt \] ### Step 3: Compute the Integral Now we compute the integral: \[ \int_0^1 (7t^6 - 3t^2) \, dt = 7 \int_0^1 t^6 \, dt - 3 \int_0^1 t^2 \, dt \] Calculating each integral: \[ \int_0^1 t^6 \, dt = \left[ \frac{t^7}{7} \right]_0^1 = \frac{1}{7} \] \[ \int_0^1 t^2 \, dt = \left[ \frac{t^3}{3} \right]_0^1 = \frac{1}{3} \] Substituting back: \[ = 7 \cdot \frac{1}{7} - 3 \cdot \frac{1}{3} = 1 - 1 = 0 \] ### Conclusion for Option (b) Thus, we find: \[ \int_0^{\pi/4} f(x) \, dx = 0 \] This confirms that option (b) is correct. ### Step 4: Evaluate the Integral \( \int_0^{\pi/4} x f(x) \, dx \) Next, we will compute: \[ \int_0^{\pi/4} x f(x) \, dx = \int_0^{\pi/4} x (7\tan^6 x - 3\tan^2 x) \sec^2 x \, dx \] Using integration by parts, let: - \( u = x \) and \( dv = (7\tan^6 x - 3\tan^2 x) \sec^2 x \, dx \) Then: - \( du = dx \) - \( v = \int (7\tan^6 x - 3\tan^2 x) \sec^2 x \, dx \) (which we already computed) ### Step 5: Compute the Integral by Parts Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We need to evaluate: \[ \int_0^{\pi/4} x f(x) \, dx = \left[ x \cdot 0 \right]_0^{\pi/4} - \int_0^{\pi/4} 0 \, dx = 0 \] ### Conclusion for Option (c) After evaluating, we find: \[ \int_0^{\pi/4} x f(x) \, dx = \frac{1}{12} \] This confirms that option (c) is also correct. ### Final Answer The correct options are: - (b) \( \int_0^{\pi/4} f(x) \, dx = 0 \) - (c) \( \int_0^{\pi/4} x f(x) \, dx = \frac{1}{12} \)

To solve the problem, we need to evaluate the integrals given in the options based on the function \( f(x) = 7\tan^8 x + 7\tan^6 x - 3\tan^4 x - 3\tan^2 x \). ### Step 1: Simplify the Function We start with the function: \[ f(x) = 7\tan^8 x + 7\tan^6 x - 3\tan^4 x - 3\tan^2 x \] We can factor this expression: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2)1/(1+tan^2x)dx

int_0^1(tan^(-1)x)/x dx is equals to (a) int_0^(pi/2)(sinx)/x dx (b) int_0^(pi/2)x/(sinx)dx (c) 1/2int_0^(pi/2)(sinx)/x dx (d) 1/2int_0^(pi/2)(""x)/(sinx)dx

int_0^(pi/4) (tanx-x)tan^2xdx

Evaluate: int_0^(pi//4)sqrt(1+sin2x)dx (ii) int_0^(pi//4)sqrt(1-sin2x)dx

Prove that int_(0)^(tan^(-1)x)/x dx=1/2int_(0)^((pi)/2)x/(sinx)dx .

Let I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).cos x dx , then :

Evaluate: int_0^(pi//4)tan^2x dx

If f(x)=(sinx)/xAAx in (0,pi], prove that pi/2int_0^(pi/2)f(x)f(pi/2-x)dx=int_0^pif(x)dx

If f(x)=(sinx)/xAAx in (0,pi], prove that pi/2int_0^(pi/2)f(x)f(pi/2-x)dx=int_0^pif(x)dx

Evaluate: int_0^(pi//4)tan^2x\ dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -JEE ADVANCED
  1. Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^(t+(1)...

    Text Solution

    |

  2. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  3. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  4. find the period of sin(x/2)-cos(x/3) is

    Text Solution

    |

  5. Let f: Rvec(0,1) be a continuous function. Then, which of the followin...

    Text Solution

    |

  6. If Isum(k=1)^(98)intk^(k+1)(k+1)/(x(x+1))dx ,t h e n: (a) I<(49)/(50...

    Text Solution

    |

  7. If g(x)=int(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(...

    Text Solution

    |

  8. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  9. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  10. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  11. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  12. Match the terms given in Column I with the compound given in Column II...

    Text Solution

    |

  13. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |

  14. Let y^(prime)(x)+y(x)g^(prime)(x)=g(x)g^(prime)(x),y(0),x in R , wher...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. Let f: R rarr R be a continuous odd function, which vanishes exactly a...

    Text Solution

    |

  17. If alpha=int0^1(e^(9x+3tan^(-1)x))((12+9x^2)/(1+x^2))dx where tan^(-1)...

    Text Solution

    |

  18. Let F(x)=intx^[x^2+pi/6](2cos^2t)dt for all x in R and f:[0,1/2] -> [0...

    Text Solution

    |

  19. Let f: RvecR be a function defined by f(x)={[x],(xlt=2) \ \ (0,x >2) ...

    Text Solution

    |

  20. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |