Home
Class 12
MATHS
find the period of sin(x/2)-cos(x/3) is...

find the period of sin`(x/2)-cos(x/3)` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the period of the function \( f(x) = \sin\left(\frac{x}{2}\right) - \cos\left(\frac{x}{3}\right) \), we need to determine the individual periods of the sine and cosine components and then find the least common multiple (LCM) of these periods. ### Step 1: Determine the period of \( \sin\left(\frac{x}{2}\right) \) The standard period of the sine function \( \sin(x) \) is \( 2\pi \). When the argument of the sine function is modified to \( \frac{x}{2} \), the period changes according to the formula: \[ \text{Period} = \frac{2\pi}{k} \] where \( k \) is the coefficient of \( x \) in the argument. Here, \( k = \frac{1}{2} \), so: \[ \text{Period of } \sin\left(\frac{x}{2}\right) = \frac{2\pi}{\frac{1}{2}} = 4\pi \] ### Step 2: Determine the period of \( \cos\left(\frac{x}{3}\right) \) Similarly, the standard period of the cosine function \( \cos(x) \) is also \( 2\pi \). For the argument \( \frac{x}{3} \), we apply the same formula: \[ \text{Period of } \cos\left(\frac{x}{3}\right) = \frac{2\pi}{\frac{1}{3}} = 6\pi \] ### Step 3: Find the LCM of the periods Now, we have the periods of both functions: - Period of \( \sin\left(\frac{x}{2}\right) = 4\pi \) - Period of \( \cos\left(\frac{x}{3}\right) = 6\pi \) To find the period of the combined function \( f(x) \), we need to calculate the least common multiple (LCM) of \( 4\pi \) and \( 6\pi \). The LCM of the coefficients \( 4 \) and \( 6 \) is \( 12 \). Therefore: \[ \text{LCM}(4\pi, 6\pi) = 12\pi \] ### Conclusion Thus, the period of the function \( f(x) = \sin\left(\frac{x}{2}\right) - \cos\left(\frac{x}{3}\right) \) is: \[ \text{Period} = 12\pi \] ---

To find the period of the function \( f(x) = \sin\left(\frac{x}{2}\right) - \cos\left(\frac{x}{3}\right) \), we need to determine the individual periods of the sine and cosine components and then find the least common multiple (LCM) of these periods. ### Step 1: Determine the period of \( \sin\left(\frac{x}{2}\right) \) The standard period of the sine function \( \sin(x) \) is \( 2\pi \). When the argument of the sine function is modified to \( \frac{x}{2} \), the period changes according to the formula: \[ \text{Period} = \frac{2\pi}{k} ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If cos x = - (1)/(3) , x lies in III quardrnat, then find the values of sin(x/2), cos (x/2) and tan (x/2) .

Find the period of (|sin4x|+|cos4x|)/(|sin4x-cos4 x|+|sin4x+cos4x|)

Find the period of (a) (|sin4x|+|cos 4x|)/(|sin 4x-cos 4x|+|sin 4x+cos 4x|) (b) f(x)="sin"(pi x)/(n!)-"cos"(pi x)/((n+1)!) (c ) f(x)=sin x +"tan"(x)/(2)+"sin"(x)/(2^(2))+"tan"(x)/(2^(3))+ ... +"sin"(x)/(2^(n-1))+"tan"(x)/(2^(n))

The period of sin(pi/4)x+cos(pi/2)x+cos(pi/3)x is

The period of the function |sin^3(x/2)|+|cos^5(x/5)| is

In each of the following cases find the period of the function if it is periodic. (i) f(x)="sin"(pi x)/(sqrt(2))+"cos"(pi x)/(sqrt(3)) " (ii) " f(x)="sin"(pi x)/(sqrt(3))+"cos"(pi x)/(2sqrt(3))

Find period of f(x)=tan3x+sin(x/3) .

The period of f(x)=sin""(2pix)/(3)+ cos""(pix)/(2) , is

Find the general solution of sin5x cos 3x = sin9x cos7x

If tan x =1(1)/3 , find the value of : 4 sin^2x -3 cos^2x +2

CENGAGE ENGLISH-DEFINITE INTEGRATION -JEE ADVANCED
  1. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  2. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  3. find the period of sin(x/2)-cos(x/3) is

    Text Solution

    |

  4. Let f: Rvec(0,1) be a continuous function. Then, which of the followin...

    Text Solution

    |

  5. If Isum(k=1)^(98)intk^(k+1)(k+1)/(x(x+1))dx ,t h e n: (a) I<(49)/(50...

    Text Solution

    |

  6. If g(x)=int(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(...

    Text Solution

    |

  7. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  8. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  9. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  10. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  11. Match the terms given in Column I with the compound given in Column II...

    Text Solution

    |

  12. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |

  13. Let y^(prime)(x)+y(x)g^(prime)(x)=g(x)g^(prime)(x),y(0),x in R , wher...

    Text Solution

    |

  14. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  15. Let f: R rarr R be a continuous odd function, which vanishes exactly a...

    Text Solution

    |

  16. If alpha=int0^1(e^(9x+3tan^(-1)x))((12+9x^2)/(1+x^2))dx where tan^(-1)...

    Text Solution

    |

  17. Let F(x)=intx^[x^2+pi/6](2cos^2t)dt for all x in R and f:[0,1/2] -> [0...

    Text Solution

    |

  18. Let f: RvecR be a function defined by f(x)={[x],(xlt=2) \ \ (0,x >2) ...

    Text Solution

    |

  19. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  20. Let f: R -> R be a differentiable function such that f(0) = 0,f(pi/2)=...

    Text Solution

    |