Home
Class 12
MATHS
If Isum(k=1)^(98)intk^(k+1)(k+1)/(x(x+1...

If `Isum_(k=1)^(98)int_k^(k+1)(k+1)/(x(x+1))dx ,t h e n:` (a) `I<(49)/(50)` (b) `I >(log)_e 99` (c) `I >(49)/(50)` (d) `I<(log)_e 99`

A

`Igtlog_(e)99`

B

`Iltlog_(e)99`

C

`I lt 49/50`

D

`I gt 49/50`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral \[ I = \sum_{k=1}^{98} \int_k^{k+1} \frac{k+1}{x(x+1)} \, dx \] ### Step 1: Evaluate the Integral We start by evaluating the integral \[ \int_k^{k+1} \frac{k+1}{x(x+1)} \, dx \] We can simplify the integrand using partial fractions: \[ \frac{k+1}{x(x+1)} = \frac{k+1}{x} - \frac{k+1}{x+1} \] Thus, we can rewrite the integral as: \[ \int_k^{k+1} \left( \frac{k+1}{x} - \frac{k+1}{x+1} \right) \, dx \] ### Step 2: Integrate Each Term Now we can integrate each term separately: 1. For the first term: \[ \int_k^{k+1} \frac{k+1}{x} \, dx = (k+1) \left[ \ln x \right]_k^{k+1} = (k+1) (\ln(k+1) - \ln k) = (k+1) \ln\left(\frac{k+1}{k}\right) \] 2. For the second term: \[ \int_k^{k+1} \frac{k+1}{x+1} \, dx = (k+1) \left[ \ln(x+1) \right]_k^{k+1} = (k+1) (\ln(k+2) - \ln(k+1)) = (k+1) \ln\left(\frac{k+2}{k+1}\right) \] ### Step 3: Combine the Results Combining both results, we have: \[ \int_k^{k+1} \frac{k+1}{x(x+1)} \, dx = (k+1) \ln\left(\frac{k+1}{k}\right) - (k+1) \ln\left(\frac{k+2}{k+1}\right) \] This simplifies to: \[ (k+1) \left( \ln\left(\frac{k+1}{k}\right) - \ln\left(\frac{k+2}{k+1}\right) \right) = (k+1) \ln\left(\frac{k+1}{k+2}\right) \] ### Step 4: Sum Over k Now we substitute this back into the summation: \[ I = \sum_{k=1}^{98} (k+1) \ln\left(\frac{k+1}{k+2}\right) \] ### Step 5: Simplify the Summation This can be rewritten as: \[ I = \sum_{k=1}^{98} (k+1) \left( \ln(k+1) - \ln(k+2) \right) \] ### Step 6: Telescoping Series This summation is telescoping. The terms will cancel out, leading to: \[ I = \ln(2) + \ln(3) + \ldots + \ln(99) - \ln(3) - \ln(4) - \ldots - \ln(100) \] After cancellation, we find: \[ I = \ln\left(\frac{99}{2}\right) \] ### Step 7: Analyze the Result Now we need to analyze the bounds for \( I \): 1. Since \( \ln(50) < \ln\left(\frac{99}{2}\right) < \ln(99) \), we can conclude: \[ \ln(50) < I < \ln(99) \] ### Conclusion Thus, the correct options are: - \( I > \frac{49}{50} \) (Option c) - \( I < \ln(99) \) (Option d)

To solve the given problem, we need to evaluate the integral \[ I = \sum_{k=1}^{98} \int_k^{k+1} \frac{k+1}{x(x+1)} \, dx \] ### Step 1: Evaluate the Integral ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

S=sum_(i=1)^nsum_(j=1)^isum_(k=1)^j1

If sum_(k=0)^(200)i^k+prod_(p=1)^(50)i^p =x+iy then (x,y) is

The value of int_0^1lim_(n->oo)sum_(k =0)^n(x^(k+2)2^k)/(k!)dx is: (a) e ^(2) -1 (b) 2 (c) (e ^(2)-1)/(2) (d) (e ^(2) -1)/(4)

The value of integral sum _(k=1)^(n) int _(0)^(1) f(k - 1+x) dx is

If I_(n)=int_(0)^(pi) e^(x)sin^(n)x " dx then " (I_(3))/(I_(1)) is equal to

If f(x)=(e^x)/(1+e^x), I_1=int_(f(-a))^(f(a))xg(x(1-x)dx and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx , then the value of (I_2)/(I_1) is (a) -1 (b) -2 (c) 2 (d) 1

Given (1-x^(3))^(n)=sum_(k=0)^(n)a_(k)x^(k)(1-x)^(3n-2k) then the value of 3*a_(k-1)+a_(k) is (a) "^(n)C_(k)*3^(k) (b) "^(n+1)C_(k)*3^(k) (c) "^(n+1)C_(k)*3^(k-1) (d) "^(n)C_(k-1)*3^(k)

If int_(0)^(1) cot^(-1)(1-x+x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

If I_(m)=int_(0)^(oo) e^(-x)x^(n-1)dx, "then" int_(0)^(oo) e^(-lambdax) x^(n-1)dx

"I f"I_1=int_(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I_2=int_(-100)^(101)(dx)/(5+2x-2x^2),t h e n(I_1)/(I_2)"i s" (a)2 (b) 1/2 (c) 1 (d) -1/2

CENGAGE ENGLISH-DEFINITE INTEGRATION -JEE ADVANCED
  1. find the period of sin(x/2)-cos(x/3) is

    Text Solution

    |

  2. Let f: Rvec(0,1) be a continuous function. Then, which of the followin...

    Text Solution

    |

  3. If Isum(k=1)^(98)intk^(k+1)(k+1)/(x(x+1))dx ,t h e n: (a) I<(49)/(50...

    Text Solution

    |

  4. If g(x)=int(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(...

    Text Solution

    |

  5. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  6. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  9. Match the terms given in Column I with the compound given in Column II...

    Text Solution

    |

  10. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |

  11. Let y^(prime)(x)+y(x)g^(prime)(x)=g(x)g^(prime)(x),y(0),x in R , wher...

    Text Solution

    |

  12. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  13. Let f: R rarr R be a continuous odd function, which vanishes exactly a...

    Text Solution

    |

  14. If alpha=int0^1(e^(9x+3tan^(-1)x))((12+9x^2)/(1+x^2))dx where tan^(-1)...

    Text Solution

    |

  15. Let F(x)=intx^[x^2+pi/6](2cos^2t)dt for all x in R and f:[0,1/2] -> [0...

    Text Solution

    |

  16. Let f: RvecR be a function defined by f(x)={[x],(xlt=2) \ \ (0,x >2) ...

    Text Solution

    |

  17. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  18. Let f: R -> R be a differentiable function such that f(0) = 0,f(pi/2)=...

    Text Solution

    |

  19. For each positive integer n , let yn=1/n((n+1)(n+2)dot(n+n))^(1/n) ...

    Text Solution

    |

  20. The value of the integral int0^(1/2)(1+sqrt(3))/(((x+1)^2(1-x)^6)^(...

    Text Solution

    |