Home
Class 12
MATHS
Given that for each a epsilon(0,1),lim(h...

Given that for each `a epsilon(0,1),lim(hto 0^(+)) int_(h)^(1-h)t^(-a)(1-t)^(a-1)dt` exists. Let this limit be `g(a)`. In addition it is given the function `g(a)` is differentiable on`(0,1)`.
The value of `g(1/2)` is a. `(pi)/2` b. `pi` c.`-(pi)/2` d. `0`

A

a. `pi`

B

b. `2pi`

C

c. `(pi)/2`

D

d. `(pi)/4`

Text Solution

Verified by Experts

The correct Answer is:
A

`g(1/2)=lim_(kto 0^(+))int_(k)^(1+k)t^(-1//2)(1-t)^(-1//2)dt`
`=int_(0)^(1)(dt)/(sqrt(t-t^(2)))=int_(e)^(1)(dt)/(sqrt(1/4-(t-1/2)^(2)))=sin^(-1)((t-1/2)/(1/2))|._(0)^(1)`
`=sin^(-1)1-sin^(-1)(-1)=pi`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xto0)(1)/(x) int_(0)^(x)(1+ sin 2t)^(1/t) dt equals :

The value of int_0^pi1/(5+3cosx)dx is a. pi//2 b. pi//4 c. 0 d. pi//8

The total number for distinct x epsilon[0,1] for which int_(0)^(x)(t^(2))/(1+t^(4))dt=2x-1 is __________.

Let f be continuous and the function g is defined as g(x)=int_0^x(t^2int_1^t f(u)du)dt where f(1) = 3 . then the value of g' (1) +g''(1) is

If tanA=a/(a+1) and tanB=1/(2a+1) then the value of A+B is: (a). 0 (b). pi/2 (c). pi/3 (d). pi/4

g(x)=2x-1 h(x)=1-g(x) The functions g and h are defined above. What is the value of h(0) ?

Let g(x) be differentiable on R and int_(sint)^1x^2g(x)dx=(1-sint), where t in (0,pi/2)dot Then the value of g(1/(sqrt(2))) is____

Let g(x) be differentiable on R and int_(sint)^1x^2g(x)dx=(1-sint), where t in (0,pi/2)dot Then the value of g(1/(sqrt(2))) is____

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :

Let g(x)=int(1+2cosx)/((cosx+2)^2)dxa n dg(0)=0. then the value of 8g(pi/2) is __________

CENGAGE ENGLISH-DEFINITE INTEGRATION -JEE ADVANCED
  1. find the period of sin(x/2)-cos(x/3) is

    Text Solution

    |

  2. Let f: Rvec(0,1) be a continuous function. Then, which of the followin...

    Text Solution

    |

  3. If Isum(k=1)^(98)intk^(k+1)(k+1)/(x(x+1))dx ,t h e n: (a) I<(49)/(50...

    Text Solution

    |

  4. If g(x)=int(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(...

    Text Solution

    |

  5. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  6. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  9. Match the terms given in Column I with the compound given in Column II...

    Text Solution

    |

  10. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |

  11. Let y^(prime)(x)+y(x)g^(prime)(x)=g(x)g^(prime)(x),y(0),x in R , wher...

    Text Solution

    |

  12. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  13. Let f: R rarr R be a continuous odd function, which vanishes exactly a...

    Text Solution

    |

  14. If alpha=int0^1(e^(9x+3tan^(-1)x))((12+9x^2)/(1+x^2))dx where tan^(-1)...

    Text Solution

    |

  15. Let F(x)=intx^[x^2+pi/6](2cos^2t)dt for all x in R and f:[0,1/2] -> [0...

    Text Solution

    |

  16. Let f: RvecR be a function defined by f(x)={[x],(xlt=2) \ \ (0,x >2) ...

    Text Solution

    |

  17. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  18. Let f: R -> R be a differentiable function such that f(0) = 0,f(pi/2)=...

    Text Solution

    |

  19. For each positive integer n , let yn=1/n((n+1)(n+2)dot(n+n))^(1/n) ...

    Text Solution

    |

  20. The value of the integral int0^(1/2)(1+sqrt(3))/(((x+1)^2(1-x)^6)^(...

    Text Solution

    |