Home
Class 12
MATHS
Given that for each a epsilon(0,1),lim(h...

Given that for each `a epsilon(0,1),lim(hto 0^(+)) int_(h)^(1-h)t^(-a)(1-t)^(a-1)dt` exists. Let this limit be `g(a)`. In addition it is given the function `g(a)` is differentiable on`(0,1)`.
The value of `g(1/2)` is a. `(pi)/2` b. `pi` c.`-(pi)/2` d. `0`

A

`(pi)/2`

B

`pi`

C

`-(pi)/2`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ g\left(\frac{1}{2}\right) = \lim_{h \to 0^+} \int_h^{1-h} t^{-\frac{1}{2}} (1-t)^{\frac{1}{2}-1} dt \] ### Step 1: Rewrite the Integral We can rewrite the integral as: \[ g\left(\frac{1}{2}\right) = \lim_{h \to 0^+} \int_h^{1-h} \frac{1}{\sqrt{t}} \cdot \frac{1}{\sqrt{1-t}} dt \] ### Step 2: Change of Variables To simplify the evaluation, we can use a substitution. Let \( t = \sin^2(x) \), then \( dt = 2\sin(x)\cos(x)dx = \sin(2x)dx \). The limits change as follows: - When \( t = h \), \( x = \arcsin(\sqrt{h}) \) - When \( t = 1-h \), \( x = \frac{\pi}{2} - \arcsin(\sqrt{h}) \) Thus, the integral becomes: \[ g\left(\frac{1}{2}\right) = \lim_{h \to 0^+} \int_{\arcsin(\sqrt{h})}^{\frac{\pi}{2} - \arcsin(\sqrt{h})} \frac{1}{\sqrt{\sin^2(x)}} \cdot \frac{1}{\sqrt{\cos^2(x)}} \cdot \sin(2x) dx \] ### Step 3: Simplify the Integral The integral simplifies to: \[ g\left(\frac{1}{2}\right) = \lim_{h \to 0^+} \int_{\arcsin(\sqrt{h})}^{\frac{\pi}{2} - \arcsin(\sqrt{h})} 2 \, dx \] ### Step 4: Evaluate the Limit As \( h \to 0^+ \), \( \arcsin(\sqrt{h}) \to 0 \). Thus, the limits of integration approach: \[ g\left(\frac{1}{2}\right) = \lim_{h \to 0^+} \int_0^{\frac{\pi}{2}} 2 \, dx = 2 \cdot \frac{\pi}{2} = \pi \] ### Final Answer Thus, the value of \( g\left(\frac{1}{2}\right) \) is: \[ \boxed{\pi} \]

To solve the problem, we need to evaluate the limit: \[ g\left(\frac{1}{2}\right) = \lim_{h \to 0^+} \int_h^{1-h} t^{-\frac{1}{2}} (1-t)^{\frac{1}{2}-1} dt \] ### Step 1: Rewrite the Integral We can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xto0)(1)/(x) int_(0)^(x)(1+ sin 2t)^(1/t) dt equals :

The value of int_0^pi1/(5+3cosx)dx is a. pi//2 b. pi//4 c. 0 d. pi//8

The total number for distinct x epsilon[0,1] for which int_(0)^(x)(t^(2))/(1+t^(4))dt=2x-1 is __________.

Let f be continuous and the function g is defined as g(x)=int_0^x(t^2int_1^t f(u)du)dt where f(1) = 3 . then the value of g' (1) +g''(1) is

If tanA=a/(a+1) and tanB=1/(2a+1) then the value of A+B is: (a). 0 (b). pi/2 (c). pi/3 (d). pi/4

g(x)=2x-1 h(x)=1-g(x) The functions g and h are defined above. What is the value of h(0) ?

Let g(x) be differentiable on R and int_(sint)^1x^2g(x)dx=(1-sint), where t in (0,pi/2)dot Then the value of g(1/(sqrt(2))) is____

Let g(x) be differentiable on R and int_(sint)^1x^2g(x)dx=(1-sint), where t in (0,pi/2)dot Then the value of g(1/(sqrt(2))) is____

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :

Let g(x)=int(1+2cosx)/((cosx+2)^2)dxa n dg(0)=0. then the value of 8g(pi/2) is __________

CENGAGE ENGLISH-DEFINITE INTEGRATION -JEE ADVANCED
  1. find the period of sin(x/2)-cos(x/3) is

    Text Solution

    |

  2. Let f: Rvec(0,1) be a continuous function. Then, which of the followin...

    Text Solution

    |

  3. If Isum(k=1)^(98)intk^(k+1)(k+1)/(x(x+1))dx ,t h e n: (a) I<(49)/(50...

    Text Solution

    |

  4. If g(x)=int(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(...

    Text Solution

    |

  5. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  6. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  9. Match the terms given in Column I with the compound given in Column II...

    Text Solution

    |

  10. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |

  11. Let y^(prime)(x)+y(x)g^(prime)(x)=g(x)g^(prime)(x),y(0),x in R , wher...

    Text Solution

    |

  12. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  13. Let f: R rarr R be a continuous odd function, which vanishes exactly a...

    Text Solution

    |

  14. If alpha=int0^1(e^(9x+3tan^(-1)x))((12+9x^2)/(1+x^2))dx where tan^(-1)...

    Text Solution

    |

  15. Let F(x)=intx^[x^2+pi/6](2cos^2t)dt for all x in R and f:[0,1/2] -> [0...

    Text Solution

    |

  16. Let f: RvecR be a function defined by f(x)={[x],(xlt=2) \ \ (0,x >2) ...

    Text Solution

    |

  17. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  18. Let f: R -> R be a differentiable function such that f(0) = 0,f(pi/2)=...

    Text Solution

    |

  19. For each positive integer n , let yn=1/n((n+1)(n+2)dot(n+n))^(1/n) ...

    Text Solution

    |

  20. The value of the integral int0^(1/2)(1+sqrt(3))/(((x+1)^2(1-x)^6)^(...

    Text Solution

    |