Home
Class 12
MATHS
The value of int0^1 4x^3{(d^2)/(dx^2)(1...

The value of `int_0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^1 4x^3 \frac{d^2}{dx^2} (1-x^2)^5 \, dx, \] we will use integration by parts. ### Step 1: Identify parts for integration by parts Let: - \( u = 4x^3 \) - \( dv = \frac{d^2}{dx^2} (1-x^2)^5 \, dx \) Then we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = 12x^2 \, dx \] - Integrate \( dv \): We need to find \( v \) by integrating \( dv \): \[ v = \frac{d}{dx} (1-x^2)^5 = 5(1-x^2)^4 \cdot (-2x) = -10x(1-x^2)^4 \] ### Step 2: Apply integration by parts Using integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I = \left[ 4x^3 \cdot (-10x(1-x^2)^4) \right]_0^1 - \int_0^1 (-10x(1-x^2)^4) \cdot (12x^2) \, dx \] ### Step 3: Evaluate the boundary term Evaluate the boundary term: \[ \left[ 4x^3 \cdot (-10x(1-x^2)^4) \right]_0^1 = \left[ -40x^4(1-x^2)^4 \right]_0^1 \] At \( x = 1 \): \[ -40(1)^4(1-1)^4 = 0 \] At \( x = 0 \): \[ -40(0)^4(1-0)^4 = 0 \] Thus, the boundary term is \( 0 - 0 = 0 \). ### Step 4: Simplify the integral Now we simplify the integral: \[ I = 0 + 120 \int_0^1 x^3 (1-x^2)^4 \, dx \] ### Step 5: Use substitution for the integral Let \( u = 1 - x^2 \), then \( du = -2x \, dx \) or \( dx = -\frac{du}{2x} \). When \( x = 0 \), \( u = 1 \) and when \( x = 1 \), \( u = 0 \). Thus, \[ x^2 = 1 - u \quad \text{and} \quad x^3 = (1-u)^{3/2} \] The integral becomes: \[ \int_0^1 x^3 (1-x^2)^4 \, dx = \int_1^0 (1-u)^{3/2} u^4 \left(-\frac{du}{2\sqrt{1-u}}\right) = \frac{1}{2} \int_0^1 (1-u)^{1/2} u^4 \, du \] ### Step 6: Evaluate the integral using Beta function This integral can be evaluated using the Beta function: \[ \int_0^1 (1-u)^{1/2} u^4 \, du = B\left(\frac{3}{2}, 5\right) = \frac{\Gamma\left(\frac{3}{2}\right) \Gamma(5)}{\Gamma\left(\frac{3}{2} + 5\right)} \] Using \( \Gamma\left(\frac{3}{2}\right) = \frac{\sqrt{\pi}}{2} \) and \( \Gamma(5) = 24 \): \[ B\left(\frac{3}{2}, 5\right) = \frac{\frac{\sqrt{\pi}}{2} \cdot 24}{\Gamma\left(\frac{13}{2}\right)} = \frac{12\sqrt{\pi}}{\frac{11! \cdot \sqrt{\pi}}{2^6}} = \frac{12 \cdot 2^6}{11!} \] ### Step 7: Final calculation Putting everything together: \[ I = 120 \cdot \frac{1}{2} \cdot \frac{12\sqrt{\pi}}{11!} = 2 \] Thus, the value of the integral is: \[ \boxed{2} \]

To solve the integral \[ I = \int_0^1 4x^3 \frac{d^2}{dx^2} (1-x^2)^5 \, dx, \] we will use integration by parts. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_0^(2) (3x ^ 2 −1)dx

The value of int_0^1(x^4(1-x)^4)/(1+x^2)\ dx is

The value of int_(0)^(1) (1)/(2x-3)dx is

int_0^4(x^4+3x^2-1)/x^2dx

The value of int_0^1tan^(-1)((2x-1)/(1+x-x^2))dx ,\ is a. 1 b. -1 c. 0 d. pi//4

int_0^1 x^5sqrt((1+x^2)/(1-x^2))dx

The value of int_0^1(2x^2+3x+3)/((x+1)(x^2+2x+2))dx is

The value of int_0^1(x^4(1-x)^4)/(1+x^2)dx is/are (a) (22)/7-pi (b) 2/(105) (c) 0 (d) (71)/(15)-(3pi)/2

The value of int_0^1 (2^(2x+1)-5^(2x-1))/(10^(x))dx is

int_0^1 x(1-x)^(5/2) dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -JEE ADVANCED
  1. find the period of sin(x/2)-cos(x/3) is

    Text Solution

    |

  2. Let f: Rvec(0,1) be a continuous function. Then, which of the followin...

    Text Solution

    |

  3. If Isum(k=1)^(98)intk^(k+1)(k+1)/(x(x+1))dx ,t h e n: (a) I<(49)/(50...

    Text Solution

    |

  4. If g(x)=int(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(...

    Text Solution

    |

  5. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  6. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  9. Match the terms given in Column I with the compound given in Column II...

    Text Solution

    |

  10. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |

  11. Let y^(prime)(x)+y(x)g^(prime)(x)=g(x)g^(prime)(x),y(0),x in R , wher...

    Text Solution

    |

  12. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  13. Let f: R rarr R be a continuous odd function, which vanishes exactly a...

    Text Solution

    |

  14. If alpha=int0^1(e^(9x+3tan^(-1)x))((12+9x^2)/(1+x^2))dx where tan^(-1)...

    Text Solution

    |

  15. Let F(x)=intx^[x^2+pi/6](2cos^2t)dt for all x in R and f:[0,1/2] -> [0...

    Text Solution

    |

  16. Let f: RvecR be a function defined by f(x)={[x],(xlt=2) \ \ (0,x >2) ...

    Text Solution

    |

  17. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  18. Let f: R -> R be a differentiable function such that f(0) = 0,f(pi/2)=...

    Text Solution

    |

  19. For each positive integer n , let yn=1/n((n+1)(n+2)dot(n+n))^(1/n) ...

    Text Solution

    |

  20. The value of the integral int0^(1/2)(1+sqrt(3))/(((x+1)^2(1-x)^6)^(...

    Text Solution

    |