Home
Class 12
MATHS
Let f: R -> R be a differentiable functi...

Let `f: R -> R` be a differentiable function such that `f(0) = 0,f(pi/2)=3a n df^(prime)(0)=1.` If `g(x)=int_x^(pi/2)[f^(prime)(t)cos e ct-cottcos e ctf(t)]dt` for `x(0,pi/2],` then `(lim)_(x -> 0)g(x)=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will follow the reasoning provided in the video transcript and derive the solution systematically. ### Step 1: Understanding the Function and Given Conditions We are given a differentiable function \( f: \mathbb{R} \to \mathbb{R} \) with the following properties: - \( f(0) = 0 \) - \( f\left(\frac{\pi}{2}\right) = 3 \) - \( f'(0) = 1 \) We need to analyze the function \( g(x) \) defined as: \[ g(x) = \int_x^{\frac{\pi}{2}} \left[ f'(t) \csc t - \cot t \csc t f(t) \right] dt \] for \( x \in (0, \frac{\pi}{2}] \). ### Step 2: Splitting the Integral We can split \( g(x) \) into two separate integrals: \[ g(x) = \int_x^{\frac{\pi}{2}} f'(t) \csc t \, dt - \int_x^{\frac{\pi}{2}} \cot t \csc t f(t) \, dt \] Let’s denote the first integral as \( I_1 \) and the second integral as \( I_2 \): \[ g(x) = I_1 - I_2 \] ### Step 3: Evaluating \( I_1 \) using Integration by Parts For \( I_1 \): \[ I_1 = \int_x^{\frac{\pi}{2}} f'(t) \csc t \, dt \] We can use integration by parts, letting: - \( u = \csc t \) (thus \( du = -\csc t \cot t \, dt \)) - \( dv = f'(t) \, dt \) (thus \( v = f(t) \)) Applying integration by parts: \[ I_1 = \left[ f(t) \csc t \right]_x^{\frac{\pi}{2}} - \int_x^{\frac{\pi}{2}} f(t) (-\csc t \cot t) \, dt \] This simplifies to: \[ I_1 = f\left(\frac{\pi}{2}\right) \cdot 1 - f(x) \csc x + \int_x^{\frac{\pi}{2}} f(t) \csc t \cot t \, dt \] Since \( \csc\left(\frac{\pi}{2}\right) = 1 \) and \( f\left(\frac{\pi}{2}\right) = 3 \): \[ I_1 = 3 - f(x) \csc x + \int_x^{\frac{\pi}{2}} f(t) \csc t \cot t \, dt \] ### Step 4: Substitute \( I_1 \) into \( g(x) \) Substituting \( I_1 \) back into \( g(x) \): \[ g(x) = \left(3 - f(x) \csc x + \int_x^{\frac{\pi}{2}} f(t) \csc t \cot t \, dt\right) - I_2 \] We can see that the \( I_2 \) term will cancel out with the corresponding term from \( I_1 \). ### Step 5: Finding the Limit as \( x \to 0 \) Now we need to find: \[ \lim_{x \to 0} g(x) = \lim_{x \to 0} \left(3 - \frac{f(x)}{\sin x}\right) \] As \( x \to 0 \), both \( f(x) \) and \( \sin x \) approach 0, leading to a \( \frac{0}{0} \) indeterminate form. We can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{f(x)}{\sin x} = \lim_{x \to 0} \frac{f'(x)}{\cos x} \] Substituting \( x = 0 \): \[ = \frac{f'(0)}{\cos(0)} = \frac{1}{1} = 1 \] ### Final Calculation Thus, \[ \lim_{x \to 0} g(x) = 3 - 1 = 2 \] ### Conclusion The final answer is: \[ \lim_{x \to 0} g(x) = 2 \]

To solve the given problem step by step, we will follow the reasoning provided in the video transcript and derive the solution systematically. ### Step 1: Understanding the Function and Given Conditions We are given a differentiable function \( f: \mathbb{R} \to \mathbb{R} \) with the following properties: - \( f(0) = 0 \) - \( f\left(\frac{\pi}{2}\right) = 3 \) - \( f'(0) = 1 \) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f:R to R be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

If f(x)=m x+ca n df(0)=f^(prime)(0)=1. What is f(2)?

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=

Let f: R->R satisfying |f(x)|lt=x^2,AAx in R be differentiable at x=0. Then find f^(prime)(0)dot

Let f:RtoR be a differntiable function satisfying f(x)=x^(2)+3int_(0)^(x)e^(-t^(3)).f(x-t^(3))dt . Then find f(x) .

Let f(x) be a non-constant twice differentiable function defined on (-oo,oo) such that f(x)=f(1-x)a n df^(prime)(1/4)=0. Then f^(prime)(x) vanishes at least twice on [0,1] f^(prime)(1/2)=0 int_(-1/2)^(1/2)f(x+1/2)sinxdx=0 int_(-1/2)^(1/2)f(t)e^(sinpit)dt=int_(1/2)^1f(1-t)e^(sinpit)dt

Let f(x)a n dg(x) be two differentiable functions in R a n d f(2)=8,g(2)=0,f(4)=10 ,a n dg(4)=8. Then prove that g^(prime)(x)=4f^(prime)(x) for at least one x in (2,4)dot

Let fa n dg be differentiable on R and suppose f(0)=g(0)a n df^(prime)(x)lt=g^(prime)(x) for all xgeq0. Then show that f(x)lt=g(x) for all xgeq0.

CENGAGE ENGLISH-DEFINITE INTEGRATION -JEE ADVANCED
  1. find the period of sin(x/2)-cos(x/3) is

    Text Solution

    |

  2. Let f: Rvec(0,1) be a continuous function. Then, which of the followin...

    Text Solution

    |

  3. If Isum(k=1)^(98)intk^(k+1)(k+1)/(x(x+1))dx ,t h e n: (a) I<(49)/(50...

    Text Solution

    |

  4. If g(x)=int(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(...

    Text Solution

    |

  5. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  6. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  9. Match the terms given in Column I with the compound given in Column II...

    Text Solution

    |

  10. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |

  11. Let y^(prime)(x)+y(x)g^(prime)(x)=g(x)g^(prime)(x),y(0),x in R , wher...

    Text Solution

    |

  12. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  13. Let f: R rarr R be a continuous odd function, which vanishes exactly a...

    Text Solution

    |

  14. If alpha=int0^1(e^(9x+3tan^(-1)x))((12+9x^2)/(1+x^2))dx where tan^(-1)...

    Text Solution

    |

  15. Let F(x)=intx^[x^2+pi/6](2cos^2t)dt for all x in R and f:[0,1/2] -> [0...

    Text Solution

    |

  16. Let f: RvecR be a function defined by f(x)={[x],(xlt=2) \ \ (0,x >2) ...

    Text Solution

    |

  17. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  18. Let f: R -> R be a differentiable function such that f(0) = 0,f(pi/2)=...

    Text Solution

    |

  19. For each positive integer n , let yn=1/n((n+1)(n+2)dot(n+n))^(1/n) ...

    Text Solution

    |

  20. The value of the integral int0^(1/2)(1+sqrt(3))/(((x+1)^2(1-x)^6)^(...

    Text Solution

    |