Home
Class 12
MATHS
For each positive integer n , let yn=...

For each positive integer `n` , let `y_n=1/n((n+1)(n+2)dot(n+n))^(1/n)` For `x in R` let `[x]` be the greatest integer less than or equal to `x` . If `(lim)_(n->oo)y_n=L` , then the value of `[L]` is ______.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit \( L \) of the sequence defined by \[ y_n = \frac{1}{n} \left( (n+1)(n+2) \cdots (n+n) \right)^{\frac{1}{n}} \] and then determine the greatest integer less than or equal to \( L \). ### Step 1: Rewrite \( y_n \) We start with the expression for \( y_n \): \[ y_n = \frac{1}{n} \left( (n+1)(n+2) \cdots (n+n) \right)^{\frac{1}{n}} \] The product \( (n+1)(n+2) \cdots (n+n) \) can be rewritten as: \[ (n+1)(n+2) \cdots (n+n) = \prod_{k=1}^{n} (n+k) \] ### Step 2: Take the logarithm Taking the natural logarithm of \( y_n \): \[ \log y_n = \log \left( \frac{1}{n} \right) + \frac{1}{n} \log \left( \prod_{k=1}^{n} (n+k) \right) \] Using the property of logarithms, we can express this as: \[ \log y_n = -\log n + \frac{1}{n} \sum_{k=1}^{n} \log(n+k) \] ### Step 3: Simplify the sum We can rewrite the sum: \[ \sum_{k=1}^{n} \log(n+k) = \sum_{k=1}^{n} \log n + \sum_{k=1}^{n} \log\left(1 + \frac{k}{n}\right) \] Thus, we have: \[ \sum_{k=1}^{n} \log(n+k) = n \log n + \sum_{k=1}^{n} \log\left(1 + \frac{k}{n}\right) \] ### Step 4: Substitute back into the logarithm Now substituting back into the expression for \( \log y_n \): \[ \log y_n = -\log n + \frac{1}{n} \left( n \log n + \sum_{k=1}^{n} \log\left(1 + \frac{k}{n}\right) \right) \] This simplifies to: \[ \log y_n = \sum_{k=1}^{n} \frac{1}{n} \log\left(1 + \frac{k}{n}\right) \] ### Step 5: Take the limit as \( n \to \infty \) As \( n \to \infty \), the sum converges to the integral: \[ \lim_{n \to \infty} \log y_n = \int_{0}^{1} \log(1+x) \, dx \] ### Step 6: Evaluate the integral To evaluate the integral: \[ \int \log(1+x) \, dx \] Using integration by parts, let \( u = \log(1+x) \) and \( dv = dx \). Then \( du = \frac{1}{1+x} \, dx \) and \( v = x \). Thus, \[ \int \log(1+x) \, dx = x \log(1+x) - \int \frac{x}{1+x} \, dx \] The integral \( \int \frac{x}{1+x} \, dx \) can be simplified and evaluated. ### Step 7: Find the limit After evaluating the integral, we find: \[ \lim_{n \to \infty} \log y_n = \log 4 - 1 \] Thus, \[ L = e^{\log 4 - 1} = \frac{4}{e} \] ### Step 8: Find the greatest integer less than or equal to \( L \) To find \( [L] \): \[ L = \frac{4}{e} \approx \frac{4}{2.718} \approx 1.47 \] Thus, the greatest integer less than or equal to \( L \) is: \[ \lfloor L \rfloor = 1 \] ### Final Answer The value of \( [L] \) is \( \boxed{1} \).

To solve the problem, we need to find the limit \( L \) of the sequence defined by \[ y_n = \frac{1}{n} \left( (n+1)(n+2) \cdots (n+n) \right)^{\frac{1}{n}} \] and then determine the greatest integer less than or equal to \( L \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If [x] denotes the greatest integer less than or equal to x and n in N , then f(X)= nx+n-[nx+n]+tan""(pix)/(2) , is

The value of [100(x-1)] is where [x] is the greatest integer less than or equal to x and x=(sum_(n=1)^44 cos n^@)/(sum_(n=1)^44 sin n^@)

If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(2))([1.x]+[2.x]+[3.x]+...+[n.x]).

If [x] denotes the greatest integer less than or equal to x , then evaluate ("lim")_(nvecoo)1/(n^3){[1^2x]+[2^2x]+[3^2x]+}[n^2x]}

Let [x] denote the greatest integer part of a real number x, if M= sum_(n=1)^(40)[(n^(2))/(2)] then M equals

If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(3))([1^(1)x]+[2^(2)x]+[3^(2)x]+...+[n^(2)x]).

For each positive integer n, let S_n =sum of all positive integers less than or equal on n. Then S_(51) equals

Find the area in the 1* quadrant bounded by [x]+[y]=n , where n in N and y=k (where k in n AA k<=n+1 ), where [.] denotes the greatest integer less than or equal to x.

Let x=(sum_(n=1)^(44) cos n^(@))/(sum_(n=1)^(44) sin n^(@)) , find the greatest integer that does not exceed.

The value of lim_(n->oo) n^(1/n)

CENGAGE ENGLISH-DEFINITE INTEGRATION -JEE ADVANCED
  1. find the period of sin(x/2)-cos(x/3) is

    Text Solution

    |

  2. Let f: Rvec(0,1) be a continuous function. Then, which of the followin...

    Text Solution

    |

  3. If Isum(k=1)^(98)intk^(k+1)(k+1)/(x(x+1))dx ,t h e n: (a) I<(49)/(50...

    Text Solution

    |

  4. If g(x)=int(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(...

    Text Solution

    |

  5. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  6. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  9. Match the terms given in Column I with the compound given in Column II...

    Text Solution

    |

  10. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |

  11. Let y^(prime)(x)+y(x)g^(prime)(x)=g(x)g^(prime)(x),y(0),x in R , wher...

    Text Solution

    |

  12. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  13. Let f: R rarr R be a continuous odd function, which vanishes exactly a...

    Text Solution

    |

  14. If alpha=int0^1(e^(9x+3tan^(-1)x))((12+9x^2)/(1+x^2))dx where tan^(-1)...

    Text Solution

    |

  15. Let F(x)=intx^[x^2+pi/6](2cos^2t)dt for all x in R and f:[0,1/2] -> [0...

    Text Solution

    |

  16. Let f: RvecR be a function defined by f(x)={[x],(xlt=2) \ \ (0,x >2) ...

    Text Solution

    |

  17. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  18. Let f: R -> R be a differentiable function such that f(0) = 0,f(pi/2)=...

    Text Solution

    |

  19. For each positive integer n , let yn=1/n((n+1)(n+2)dot(n+n))^(1/n) ...

    Text Solution

    |

  20. The value of the integral int0^(1/2)(1+sqrt(3))/(((x+1)^2(1-x)^6)^(...

    Text Solution

    |