Home
Class 12
MATHS
Find the locus of a point P which moves ...

Find the locus of a point `P` which moves such that its distance from the line `y=sqrt(3)x-7` is the same as its distance from `(2sqrt(3),-1)`

Text Solution

Verified by Experts

The point `(2sqrt(3),-1) " lies on the line y" = sqrt(3)x-7`
Therefore, locus of the point is a straight line perpendicular to the given line passing through the given point, i.e.,
`y + 1= -(1)/(sqrt(3))(x-2sqrt(3))`
or `x+sqrt(3)y =sqrt(3)`
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise EXAMPLE|12 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.1|23 Videos
  • STRAIGHT LINE

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|8 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise JEE ADVANCED (Numerical Value Type )|1 Videos

Similar Questions

Explore conceptually related problems

Find the locus of a point which moves such that its distance from the origin is three times its distance from x-axis.

Find the locus of a point , which moves such that its distance from the point (0,-1) is twice its distance from the line 3x+4y+1=0

Find the locus of a point which moves such that its distance from x axis is five times its distance from y axis.

Find the locus of a point which moves so that its distance from the x-axis is twice its distance from the y-axis.

Find the locus of a point which moves so that its distances from the points (3,4,-5) and (-2,1,4) are equal.

Find the equation of the locus of a point which moves so that its distance from the x-axis is double of its distance from the y-axis.

The equation of the locus of a point which moves so that its distance from the point (ak, 0) is k times its distance from the point ((a)/(k),0) (k ne 1) is

Find the locus of a point which moves in such away that the square of its distance from the point (3,-4) is numerically equal to its distance from the line 5x-12 y=13.

The locus of point which moves in such a way that its distance from the line (x)/(1)=(y)/(1)=(z)/(-1) is twice the distance from the plane x+y+z=0 is

Find the locus of the point such that its distance from the x-axis is half its distance from the y-axis.