Home
Class 12
MATHS
Let A=[[2,0,7] , [0,1,0], [1,-2,1]] and ...

Let `A=[[2,0,7] , [0,1,0], [1,-2,1]]` and `B=[[-x,14x,7x] , [0,1,0] , [x,-4x,-2x]]` are two matrices such that `AB=(AB)^(-1)` and `AB!=I` then `Tr((AB)+(AB)^2+(AB)^3+(AB)^4+(AB)^5+(AB)^6)=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the trace of the matrix expression \( Tr(AB + AB^2 + AB^3 + AB^4 + AB^5 + AB^6) \) given that \( AB = (AB)^{-1} \) and \( AB \neq I \). ### Step 1: Calculate the product \( AB \) Given matrices: \[ A = \begin{bmatrix} 2 & 0 & 7 \\ 0 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} -x & 14x & 7x \\ 0 & 1 & 0 \\ x & -4x & -2x \end{bmatrix} \] To find \( AB \), we multiply matrix \( A \) by matrix \( B \): \[ AB = \begin{bmatrix} 2 & 0 & 7 \\ 0 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} -x & 14x & 7x \\ 0 & 1 & 0 \\ x & -4x & -2x \end{bmatrix} \] Calculating each element of the resulting matrix: 1. First row: - First column: \( 2(-x) + 0 + 7x = -2x + 7x = 5x \) - Second column: \( 2(14x) + 0 + 7(-4x) = 28x - 28x = 0 \) - Third column: \( 2(7x) + 0 + 7(-2x) = 14x - 14x = 0 \) 2. Second row: - First column: \( 0(-x) + 1(0) + 0(x) = 0 \) - Second column: \( 0(14x) + 1(1) + 0(-4x) = 1 \) - Third column: \( 0(7x) + 1(0) + 0(-2x) = 0 \) 3. Third row: - First column: \( 1(-x) + (-2)(0) + 1(x) = -x + x = 0 \) - Second column: \( 1(14x) + (-2)(1) + 1(-4x) = 14x - 2 - 4x = 10x - 2 \) - Third column: \( 1(7x) + (-2)(0) + 1(-2x) = 7x - 2x = 5x \) Thus, we have: \[ AB = \begin{bmatrix} 5x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 10x - 2 & 5x \end{bmatrix} \] ### Step 2: Use the property \( AB = (AB)^{-1} \) Since \( AB = (AB)^{-1} \), we can conclude that \( (AB)(AB) = I \): \[ (AB)^2 = I \] ### Step 3: Calculate the powers of \( AB \) From \( (AB)^2 = I \), we can deduce: - \( (AB)^3 = AB \) - \( (AB)^4 = I \) - \( (AB)^5 = AB \) - \( (AB)^6 = I \) ### Step 4: Substitute into the trace expression Now substituting back into the trace expression: \[ Tr(AB + AB^2 + AB^3 + AB^4 + AB^5 + AB^6) = Tr(AB + I + AB + I + AB + I) \] This simplifies to: \[ Tr(3AB + 3I) = 3Tr(AB) + 3Tr(I) \] Since \( Tr(I) = 3 \) (the trace of a 3x3 identity matrix), we have: \[ Tr(AB + AB^2 + AB^3 + AB^4 + AB^5 + AB^6) = 3Tr(AB) + 9 \] ### Step 5: Calculate \( Tr(AB) \) The trace of \( AB \) is the sum of its diagonal elements: \[ Tr(AB) = 5x + 1 + (10x - 2) = 15x - 1 \] ### Step 6: Final expression for the trace Substituting \( Tr(AB) \) back into the expression: \[ Tr(AB + AB^2 + AB^3 + AB^4 + AB^5 + AB^6) = 3(15x - 1) + 9 = 45x - 3 + 9 = 45x + 6 \] ### Final Answer Thus, the final result is: \[ \boxed{45x + 6} \]

To solve the problem, we need to find the trace of the matrix expression \( Tr(AB + AB^2 + AB^3 + AB^4 + AB^5 + AB^6) \) given that \( AB = (AB)^{-1} \) and \( AB \neq I \). ### Step 1: Calculate the product \( AB \) Given matrices: \[ A = \begin{bmatrix} 2 & 0 & 7 \\ 0 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} -x & 14x & 7x \\ 0 & 1 & 0 \\ x & -4x & -2x \end{bmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Exercises|65 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.4|12 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A=[[2,1,3],[4,1,0]] and B=[[1,-1],[0,2],[5,0]] find AB and BA.

If A=[[2,1],[3,0],[5,1]] and B = [[4,0],[3,8]] then find AB

If A=[[2,3,4],[1,2,3],[-1,1,2]], B=[[1,3,0],[-1,2,1],[0,0,2]] , find AB and BA and show that AB!=BA

If A=[[2,1,3],[4,1,0]], B=[[1,-1],[0,2],[5,0]] , verify that (AB)\'=B\'A\'

Give two matrices A and B A=[(1,-2),(1,4)] and B=[(11,-5),(-1,-1)] , Find AB .

If A=[[1,4],[0,5],[6,7]] and B=[[2,3,-1],[1,0,-7]] , verify that (AB)\'=B\'A\'

If A=[[1,2],[5,7]] and B=[[2,0],[ 3,-4]] , show that AB!=BA

If A=[[2,3],[4,5]],B=[[3,4],[7,2]], C=[[1,0],[0,7]] then verify that (AB)C=A(BC)

If A=[[1,2],[3,-4],[5,6]] and B=[[4,5,6],[7,-8,2]] , is AB=BA? Also find AB and BA.

CENGAGE ENGLISH-MATRICES-CAE 13.5
  1. By the method of matrix inversion, solve the system. [(1,1,1),(2,5,7...

    Text Solution

    |

  2. Let A=[[2,0,7] , [0,1,0], [1,-2,1]] and B=[[-x,14x,7x] , [0,1,0] , [x,...

    Text Solution

    |

  3. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  4. For the matrix A=[3 1 7 5] , find x and y so that A^2+x I=y Adot

    Text Solution

    |

  5. If A^(3)=O, then prove that (I-A)^(-1) =I+A+A^(2).

    Text Solution

    |

  6. If A =[[cos alpha,-sin alpha],[sinalpha, cos alpha]] , B= [[cos 2 beta...

    Text Solution

    |

  7. If A=[(1,2,2),(2,2,3),(1,-1,3)], C=[(2,1,1),(2,2,1),(1,1,1)], D=[(10),...

    Text Solution

    |

  8. If A is a 2xx2 matrix such that A^(2)-4A+3I=O, then prove that (A+3I)^...

    Text Solution

    |

  9. For two unimobular complex numbers z(1) and z(2), find [(bar(z)(1),-z(...

    Text Solution

    |

  10. Prove that inverse of a skew-symmetric matrix (if it exists) is skew-s...

    Text Solution

    |

  11. If square matrix a is orthogonal, then prove that its inverse is also ...

    Text Solution

    |

  12. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |

  13. Prove that ("adj. "A)^(-1)=("adj. "A^(-1)).

    Text Solution

    |

  14. Using elementary transformation, find the inverse of the matrix A=[(a,...

    Text Solution

    |

  15. If A and P are the square matrices of the same order and if P be inver...

    Text Solution

    |

  16. Show that the characteristics roots of an idempotent matris are either...

    Text Solution

    |

  17. If alpha is a characteristic root of a nonsin-gular matrix, then prove...

    Text Solution

    |