Home
Class 12
MATHS
Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0...

Find `A^(-1)` if `A=|(0,1,1),(1,0,1),(1,1,0)|` and show that `A^(-1)=(A^(2)-3I)/2`

Text Solution

AI Generated Solution

To find the inverse of the matrix \( A \) and show that \( A^{-1} = \frac{A^2 - 3I}{2} \), we will follow these steps: ### Step 1: Calculate the Determinant of \( A \) Given the matrix: \[ A = \begin{pmatrix} 0 & 1 & 1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Exercises|65 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.4|12 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

If A=[[1,-1, 1],[ 2,-1, 0],[ 1, 0, 0]] , show that A^(-1)=A^2 .

If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then

If A+I={:[(2,2,3),(3,-1,1),(4,2,2)]:} then show that A^(3)-23A-40I=0

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).

If A=[{:(0,1),(1,1):}] "and" B=[{:(0,-1),(1,0):}] , then show that (A+B)(A-B)neA^(2)-B^(2)

If A=[-1 2 0-1 1 1 0 1 0] , show that A^2=A^(-1) .

If a matrix A=((3,2,0),(1,4,0),(0,0,5)) show that A^2-7A+10I_(3) = 0 and hence find A^(-1)

If A=[(3, 1),( 1, 2)] , show that A^2-5A+5I=0 . Hence, find A^(-1) .

If A=[(1,1),(0,1)] , show that A^2=[(1, 2),( 0, 1)] and A^3=[(1 ,3 ),(0 ,1)] .

CENGAGE ENGLISH-MATRICES-CAE 13.5
  1. By the method of matrix inversion, solve the system. [(1,1,1),(2,5,7...

    Text Solution

    |

  2. Let A=[[2,0,7] , [0,1,0], [1,-2,1]] and B=[[-x,14x,7x] , [0,1,0] , [x,...

    Text Solution

    |

  3. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  4. For the matrix A=[3 1 7 5] , find x and y so that A^2+x I=y Adot

    Text Solution

    |

  5. If A^(3)=O, then prove that (I-A)^(-1) =I+A+A^(2).

    Text Solution

    |

  6. If A =[[cos alpha,-sin alpha],[sinalpha, cos alpha]] , B= [[cos 2 beta...

    Text Solution

    |

  7. If A=[(1,2,2),(2,2,3),(1,-1,3)], C=[(2,1,1),(2,2,1),(1,1,1)], D=[(10),...

    Text Solution

    |

  8. If A is a 2xx2 matrix such that A^(2)-4A+3I=O, then prove that (A+3I)^...

    Text Solution

    |

  9. For two unimobular complex numbers z(1) and z(2), find [(bar(z)(1),-z(...

    Text Solution

    |

  10. Prove that inverse of a skew-symmetric matrix (if it exists) is skew-s...

    Text Solution

    |

  11. If square matrix a is orthogonal, then prove that its inverse is also ...

    Text Solution

    |

  12. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |

  13. Prove that ("adj. "A)^(-1)=("adj. "A^(-1)).

    Text Solution

    |

  14. Using elementary transformation, find the inverse of the matrix A=[(a,...

    Text Solution

    |

  15. If A and P are the square matrices of the same order and if P be inver...

    Text Solution

    |

  16. Show that the characteristics roots of an idempotent matris are either...

    Text Solution

    |

  17. If alpha is a characteristic root of a nonsin-gular matrix, then prove...

    Text Solution

    |