Home
Class 12
MATHS
For the matrix A=[3 1 7 5] , find x and ...

For the matrix `A=[3 1 7 5]` , find `x` and `y` so that `A^2+x I=y Adot`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( A^2 + xI = yA \) for the matrix \( A = \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate \( A^2 \) We need to multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix} \cdot \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix} \] Calculating the elements: - First row, first column: \( 3 \cdot 3 + 1 \cdot 7 = 9 + 7 = 16 \) - First row, second column: \( 3 \cdot 1 + 1 \cdot 5 = 3 + 5 = 8 \) - Second row, first column: \( 7 \cdot 3 + 5 \cdot 7 = 21 + 35 = 56 \) - Second row, second column: \( 7 \cdot 1 + 5 \cdot 5 = 7 + 25 = 32 \) Thus, \[ A^2 = \begin{bmatrix} 16 & 8 \\ 56 & 32 \end{bmatrix} \] ### Step 2: Write the equation \( A^2 + xI = yA \) The identity matrix \( I \) for a 2x2 matrix is: \[ I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \] So, \[ xI = \begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix} \] Now substituting \( A^2 \) and \( xI \) into the equation: \[ \begin{bmatrix} 16 & 8 \\ 56 & 32 \end{bmatrix} + \begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix} = y \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix} \] ### Step 3: Rewrite the equation This gives us: \[ \begin{bmatrix} 16 + x & 8 \\ 56 & 32 + x \end{bmatrix} = \begin{bmatrix} 3y & y \\ 7y & 5y \end{bmatrix} \] ### Step 4: Equate corresponding elements Now we equate the corresponding elements from both matrices: 1. \( 16 + x = 3y \) (1) 2. \( 8 = y \) (2) 3. \( 56 = 7y \) (3) 4. \( 32 + x = 5y \) (4) ### Step 5: Solve for \( y \) From equation (2), we directly find: \[ y = 8 \] ### Step 6: Substitute \( y \) into other equations Substituting \( y = 8 \) into equations (1), (3), and (4): - From (1): \[ 16 + x = 3(8) \implies 16 + x = 24 \implies x = 24 - 16 = 8 \] - From (3): \[ 56 = 7(8) \implies 56 = 56 \quad \text{(True)} \] - From (4): \[ 32 + x = 5(8) \implies 32 + x = 40 \implies x = 40 - 32 = 8 \] ### Final Answer Thus, the values of \( x \) and \( y \) are: \[ x = 8, \quad y = 8 \]

To solve the equation \( A^2 + xI = yA \) for the matrix \( A = \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate \( A^2 \) We need to multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix} \cdot \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Exercises|65 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.4|12 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

For the matrix A=|[3, 1], [7, 5]| , find x and y so that A^2+x I=y Adot

For the matrix A=[[3 ,1],[ 7, 5]], find x and y sot that A^2+x I+y Adot=0 Hence, Find A^(-1)dot

If A=[1 3 2 1] , find the determinant of the matrix A^2-2Adot

If 2[3 4 5x]+[1y0 1]=[7 0 10 5] , find x and y .

Given matrix A=[{:(,5),(,-3):}] and matrix B=[{:(,-1),(,7):}] find matrix X such that : A+2X=B.

If (2x + 3,y-1) =(3,5) , then find x and y.

Using elementary transformations, find the inverse of the matrix A = [[ 8, 4, 3 ], [ 2, 1, 1 ], [ 1, 2, 2 ]] and use it to solve the following system of linear equations : 8x+4y+3z=19 2x+y+z=5 x+2y+2z=7

Without using the concept of inverse of a matrix, find the matrix [x y z u] such that [(5,-7),(-2 ,3)][(x ,y),( z, u)]=[(-16,-6 ),(7, 2)] .

Given that x:y = 2:7, find 3x + 5y: 2x + y.

Given that x:y= 2:7, find 3x + 4y: 2x + 5y.

CENGAGE ENGLISH-MATRICES-CAE 13.5
  1. By the method of matrix inversion, solve the system. [(1,1,1),(2,5,7...

    Text Solution

    |

  2. Let A=[[2,0,7] , [0,1,0], [1,-2,1]] and B=[[-x,14x,7x] , [0,1,0] , [x,...

    Text Solution

    |

  3. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  4. For the matrix A=[3 1 7 5] , find x and y so that A^2+x I=y Adot

    Text Solution

    |

  5. If A^(3)=O, then prove that (I-A)^(-1) =I+A+A^(2).

    Text Solution

    |

  6. If A =[[cos alpha,-sin alpha],[sinalpha, cos alpha]] , B= [[cos 2 beta...

    Text Solution

    |

  7. If A=[(1,2,2),(2,2,3),(1,-1,3)], C=[(2,1,1),(2,2,1),(1,1,1)], D=[(10),...

    Text Solution

    |

  8. If A is a 2xx2 matrix such that A^(2)-4A+3I=O, then prove that (A+3I)^...

    Text Solution

    |

  9. For two unimobular complex numbers z(1) and z(2), find [(bar(z)(1),-z(...

    Text Solution

    |

  10. Prove that inverse of a skew-symmetric matrix (if it exists) is skew-s...

    Text Solution

    |

  11. If square matrix a is orthogonal, then prove that its inverse is also ...

    Text Solution

    |

  12. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |

  13. Prove that ("adj. "A)^(-1)=("adj. "A^(-1)).

    Text Solution

    |

  14. Using elementary transformation, find the inverse of the matrix A=[(a,...

    Text Solution

    |

  15. If A and P are the square matrices of the same order and if P be inver...

    Text Solution

    |

  16. Show that the characteristics roots of an idempotent matris are either...

    Text Solution

    |

  17. If alpha is a characteristic root of a nonsin-gular matrix, then prove...

    Text Solution

    |