Home
Class 12
MATHS
If A=[(1,2,2),(2,2,3),(1,-1,3)], C=[(2,1...

If `A=[(1,2,2),(2,2,3),(1,-1,3)], C=[(2,1,1),(2,2,1),(1,1,1)], D=[(10),(13),(9)]`, and `CB=D`. Solve the equation `AX=B`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( AX = B \) given the matrices \( A \), \( C \), and \( D \), we will follow these steps: ### Step 1: Write down the equation We start with the equation: \[ AX = B \] ### Step 2: Pre-multiply by matrix \( C \) To eliminate \( A \) from the left side, we pre-multiply both sides by \( C \): \[ CAX = CB \] Since we are given that \( CB = D \), we can substitute: \[ CAX = D \] ### Step 3: Find \( CA \) Next, we need to calculate the product \( CA \). Given: \[ C = \begin{pmatrix} 2 & 1 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 2 & 3 \\ 1 & -1 & 3 \end{pmatrix} \] We perform the matrix multiplication \( CA \): \[ CA = \begin{pmatrix} 2 & 1 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 2 & 3 \\ 1 & -1 & 3 \end{pmatrix} \] Calculating each element: - First row: - \( 2*1 + 1*2 + 1*1 = 2 + 2 + 1 = 5 \) - \( 2*2 + 1*2 + 1*(-1) = 4 + 2 - 1 = 5 \) - \( 2*2 + 1*3 + 1*3 = 4 + 3 + 3 = 10 \) - Second row: - \( 2*1 + 2*2 + 1*1 = 2 + 4 + 1 = 7 \) - \( 2*2 + 2*2 + 1*(-1) = 4 + 4 - 1 = 7 \) - \( 2*2 + 2*3 + 1*3 = 4 + 6 + 3 = 13 \) - Third row: - \( 1*1 + 1*2 + 1*1 = 1 + 2 + 1 = 4 \) - \( 1*2 + 1*2 + 1*(-1) = 2 + 2 - 1 = 3 \) - \( 1*2 + 1*3 + 1*3 = 2 + 3 + 3 = 8 \) Thus, we have: \[ CA = \begin{pmatrix} 5 & 5 & 10 \\ 7 & 7 & 13 \\ 4 & 3 & 8 \end{pmatrix} \] ### Step 4: Find \( (CA)^{-1} \) Next, we need to find the inverse of \( CA \). We can use the formula for the inverse of a 3x3 matrix or apply row reduction. For simplicity, we will calculate the inverse directly. The determinant of \( CA \) can be calculated, and if it is non-zero, we can find the inverse. After calculating, we find: \[ (CA)^{-1} = \begin{pmatrix} -\frac{17}{5} & 2 & 1 \\ \frac{4}{5} & 0 & -1 \\ \frac{7}{5} & -1 & 0 \end{pmatrix} \] ### Step 5: Multiply \( (CA)^{-1} \) by \( D \) Now, we multiply \( (CA)^{-1} \) by \( D \): \[ D = \begin{pmatrix} 10 \\ 13 \\ 9 \end{pmatrix} \] So we compute: \[ X = (CA)^{-1}D \] Calculating each element: - First row: - \( -\frac{17}{5}*10 + 2*13 + 1*9 = -34 + 26 + 9 = 1 \) - Second row: - \( \frac{4}{5}*10 + 0*13 - 1*9 = 8 - 9 = -1 \) - Third row: - \( \frac{7}{5}*10 - 1*13 + 0*9 = 14 - 13 = 1 \) Thus, we find: \[ X = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \] ### Final Solution The solution to the equation \( AX = B \) is: \[ X = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \]

To solve the equation \( AX = B \) given the matrices \( A \), \( C \), and \( D \), we will follow these steps: ### Step 1: Write down the equation We start with the equation: \[ AX = B \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Exercises|65 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.4|12 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A'=[(-2,3),(1,3)] and B=[(-1,0),(1,2)], find [A+2B]'.

if A[{:(1,3,-1),(2,2,-1),(3,0,-1):}]and B=[{:(-2,3,-1),(-1,2,-1),(-6,9,-4):}], then show that AB=BA.

If A=[[1,2,3],[2,0,-2]],B=[[1,1,-1],[2,0,3],[3,-1,2]] and C=[[1,3],[0,2],[-1,4]] find A(BC).

Let A = {1, 2, 3} and R = {(1, 1), (2,2), (1, 2), (2, 1), (1,3)} then R is

If [(2,-1), (1, 0),(-3, 4)]A=[(-1, -8, -10), (1, -2, -5), (9, 22, 15)] , then sum of all the elements of matrix A is 0 b. 1 c. 2 d. -3

The x-coordinates of the vertices of a square of unit area are the roots of the equation x^2-3|x|+2=0 . The y-coordinates of the vertices are the roots of the equation y^2-3y+2=0. Then the possible vertices of the square is/are (a)(1,1),(2,1),(2,2),(1,2) (b)(-1,1),(-2,1),(-2,2),(-1,2) (c)(2,1),(1,-1),(1,2),(2,2) (d)(-2,1),(-1,-1),(-1,2),(-2,2)

If A=[[-1,-1,3],[1,2,4],[2,-1,3]],B=[[1,-2,5],[0,-2,2],[1,2,-3]],C=[[-2,1,2],[1,1,2],[2,0,1]] then find A+B+C

CENGAGE ENGLISH-MATRICES-CAE 13.5
  1. By the method of matrix inversion, solve the system. [(1,1,1),(2,5,7...

    Text Solution

    |

  2. Let A=[[2,0,7] , [0,1,0], [1,-2,1]] and B=[[-x,14x,7x] , [0,1,0] , [x,...

    Text Solution

    |

  3. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  4. For the matrix A=[3 1 7 5] , find x and y so that A^2+x I=y Adot

    Text Solution

    |

  5. If A^(3)=O, then prove that (I-A)^(-1) =I+A+A^(2).

    Text Solution

    |

  6. If A =[[cos alpha,-sin alpha],[sinalpha, cos alpha]] , B= [[cos 2 beta...

    Text Solution

    |

  7. If A=[(1,2,2),(2,2,3),(1,-1,3)], C=[(2,1,1),(2,2,1),(1,1,1)], D=[(10),...

    Text Solution

    |

  8. If A is a 2xx2 matrix such that A^(2)-4A+3I=O, then prove that (A+3I)^...

    Text Solution

    |

  9. For two unimobular complex numbers z(1) and z(2), find [(bar(z)(1),-z(...

    Text Solution

    |

  10. Prove that inverse of a skew-symmetric matrix (if it exists) is skew-s...

    Text Solution

    |

  11. If square matrix a is orthogonal, then prove that its inverse is also ...

    Text Solution

    |

  12. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |

  13. Prove that ("adj. "A)^(-1)=("adj. "A^(-1)).

    Text Solution

    |

  14. Using elementary transformation, find the inverse of the matrix A=[(a,...

    Text Solution

    |

  15. If A and P are the square matrices of the same order and if P be inver...

    Text Solution

    |

  16. Show that the characteristics roots of an idempotent matris are either...

    Text Solution

    |

  17. If alpha is a characteristic root of a nonsin-gular matrix, then prove...

    Text Solution

    |