Home
Class 12
MATHS
For two unimobular complex numbers z(1) ...

For two unimobular complex numbers `z_(1)` and `z_(2)`, find `[(bar(z)_(1),-z_(2)),(bar(z)_(2),z_(1))]^(-1) [(z_(1),z_(2)),(-bar(z)_(2),bar(z)_(1))]^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \left[ \begin{pmatrix} \bar{z}_1 & -z_2 \\ \bar{z}_2 & z_1 \end{pmatrix} \right]^{-1} \left[ \begin{pmatrix} z_1 & z_2 \\ -\bar{z}_2 & \bar{z}_1 \end{pmatrix} \right]^{-1} \] where \( z_1 \) and \( z_2 \) are unimodular complex numbers (i.e., \( |z_1| = 1 \) and \( |z_2| = 1 \)). ### Step 1: Define Matrices A and B Let: \[ A = \begin{pmatrix} \bar{z}_1 & -z_2 \\ \bar{z}_2 & z_1 \end{pmatrix} \] \[ B = \begin{pmatrix} z_1 & z_2 \\ -\bar{z}_2 & \bar{z}_1 \end{pmatrix} \] ### Step 2: Use the Inverse Property of Matrices Using the property of inverses, we have: \[ A^{-1} B^{-1} = (BA)^{-1} \] ### Step 3: Compute the Product \( BA \) Now, we compute the product \( BA \): \[ BA = \begin{pmatrix} z_1 & z_2 \\ -\bar{z}_2 & \bar{z}_1 \end{pmatrix} \begin{pmatrix} \bar{z}_1 & -z_2 \\ \bar{z}_2 & z_1 \end{pmatrix} \] Calculating this product: 1. The element at (1,1): \[ z_1 \bar{z}_1 + z_2 \bar{z}_2 = |z_1|^2 + |z_2|^2 = 1 + 1 = 2 \] 2. The element at (1,2): \[ z_1 (-z_2) + z_2 z_1 = -z_1 z_2 + z_2 z_1 = 0 \] 3. The element at (2,1): \[ -\bar{z}_2 \bar{z}_1 + \bar{z}_1 z_2 = -\bar{z}_2 \bar{z}_1 + \bar{z}_1 z_2 = 0 \] 4. The element at (2,2): \[ -\bar{z}_2 (-z_2) + \bar{z}_1 z_1 = |z_2|^2 + |z_1|^2 = 1 + 1 = 2 \] Thus, we have: \[ BA = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \] ### Step 4: Find the Inverse of \( BA \) Now, we find the inverse of \( BA \): \[ (BA)^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \] ### Final Result Thus, the final answer is: \[ \left[ \begin{pmatrix} \bar{z}_1 & -z_2 \\ \bar{z}_2 & z_1 \end{pmatrix} \right]^{-1} \left[ \begin{pmatrix} z_1 & z_2 \\ -\bar{z}_2 & \bar{z}_1 \end{pmatrix} \right]^{-1} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \]

To solve the problem, we need to find the value of the expression: \[ \left[ \begin{pmatrix} \bar{z}_1 & -z_2 \\ \bar{z}_2 & z_1 \end{pmatrix} \right]^{-1} \left[ \begin{pmatrix} z_1 & z_2 \\ -\bar{z}_2 & \bar{z}_1 \end{pmatrix} \right]^{-1} \] where \( z_1 \) and \( z_2 \) are unimodular complex numbers (i.e., \( |z_1| = 1 \) and \( |z_2| = 1 \)). ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Exercises|65 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.4|12 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

For two complex numbers z_(1) and z_(2) , we have |(z_(1)-z_(2))/(1-barz_(1)z_(2))|=1 , then

For two unimodular complex number z_1a n dz_2 [[barz_1, -z_2], [barz_2, z_1]]^(-1) [[(z_1, z_2], [-barz_2, barz_1]]^(-1) is equal to [(z_1, z_2), (z_1bar, z_2bar)]^ b. [1 0 0 1] c. [1//2 0 0 1//2] d. none of these

For any two complex numbers z_(1) and z_(2) |z_(1)+z_(2)|^(2) =(|z_(1)|^(2)+|z_(2)|^(2))

Let z_(1)=2 -I, z_(2)= -2 +i , find (i) Re ((z_(1)z_(2))/(bar(z)_(1))) , (ii) Im ((1)/(z_(1)bar(z)_(2)))

For any complex numbers z_1,z_2 and z_3, z_3 Im(bar(z_2)z_3) +z_2Im(bar(z_3)z_1) + z_1 Im(bar(z_1)z_2) is

if z_(1) = 3i and z_(2) =1 + 2i , then find z_(1)z_(2) -z_(1)

For any two complex numbers, z_(1),z_(2) |1/2(z_(1)+z_(2))+sqrt(z_(1)z_(2))|+|1/2(z_(1)+z_(2))-sqrt(z_(1)z_(2))| is equal to

If |z_(1)|=|z_(2)|=1 , then prove that [{:(,z_(1),-z_(2)),(,bar(z)_(2),bar(z)_(1)):}] [{:(,bar(z)_(1),z_(2)),(,-bar(z)_(2),z_(1)):}]=[{:(,1//2,0),(,0,1//2):}]

If z_(1)= 3 + 5i and z_(2)= 2- 3i , then verify that bar(((z_(1))/(z_(2))))= (bar(z)_(1))/(bar(z)_(2))

For any two complex numbers z_(1),z_(2) the values of |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2) , is

CENGAGE ENGLISH-MATRICES-CAE 13.5
  1. By the method of matrix inversion, solve the system. [(1,1,1),(2,5,7...

    Text Solution

    |

  2. Let A=[[2,0,7] , [0,1,0], [1,-2,1]] and B=[[-x,14x,7x] , [0,1,0] , [x,...

    Text Solution

    |

  3. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  4. For the matrix A=[3 1 7 5] , find x and y so that A^2+x I=y Adot

    Text Solution

    |

  5. If A^(3)=O, then prove that (I-A)^(-1) =I+A+A^(2).

    Text Solution

    |

  6. If A =[[cos alpha,-sin alpha],[sinalpha, cos alpha]] , B= [[cos 2 beta...

    Text Solution

    |

  7. If A=[(1,2,2),(2,2,3),(1,-1,3)], C=[(2,1,1),(2,2,1),(1,1,1)], D=[(10),...

    Text Solution

    |

  8. If A is a 2xx2 matrix such that A^(2)-4A+3I=O, then prove that (A+3I)^...

    Text Solution

    |

  9. For two unimobular complex numbers z(1) and z(2), find [(bar(z)(1),-z(...

    Text Solution

    |

  10. Prove that inverse of a skew-symmetric matrix (if it exists) is skew-s...

    Text Solution

    |

  11. If square matrix a is orthogonal, then prove that its inverse is also ...

    Text Solution

    |

  12. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |

  13. Prove that ("adj. "A)^(-1)=("adj. "A^(-1)).

    Text Solution

    |

  14. Using elementary transformation, find the inverse of the matrix A=[(a,...

    Text Solution

    |

  15. If A and P are the square matrices of the same order and if P be inver...

    Text Solution

    |

  16. Show that the characteristics roots of an idempotent matris are either...

    Text Solution

    |

  17. If alpha is a characteristic root of a nonsin-gular matrix, then prove...

    Text Solution

    |