Home
Class 12
MATHS
Using elementary transformation, find th...

Using elementary transformation, find the inverse of the matrix `A=[(a,b),(c,((1+bc)/a))]`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} a & b \\ c & \frac{1 + bc}{a} \end{pmatrix} \) using elementary transformations, we will augment the matrix \( A \) with the identity matrix \( I \) and perform row operations to transform \( A \) into \( I \). The augmented matrix will look like this: \[ \left( \begin{array}{cc|cc} a & b & 1 & 0 \\ c & \frac{1 + bc}{a} & 0 & 1 \end{array} \right) \] ### Step 1: Normalize the first row We start by dividing the first row by \( a \): \[ R_1 \rightarrow \frac{1}{a} R_1 \] This gives us: \[ \left( \begin{array}{cc|cc} 1 & \frac{b}{a} & \frac{1}{a} & 0 \\ c & \frac{1 + bc}{a} & 0 & 1 \end{array} \right) \] ### Step 2: Eliminate the first element of the second row Next, we will eliminate the \( c \) in the second row by performing the operation: \[ R_2 \rightarrow R_2 - c R_1 \] This results in: \[ \left( \begin{array}{cc|cc} 1 & \frac{b}{a} & \frac{1}{a} & 0 \\ 0 & \frac{1 + bc}{a} - c \cdot \frac{b}{a} & -c \cdot \frac{1}{a} & 1 \end{array} \right) \] Simplifying the second row: \[ \frac{1 + bc - cb}{a} = \frac{1}{a} \] Thus, we have: \[ \left( \begin{array}{cc|cc} 1 & \frac{b}{a} & \frac{1}{a} & 0 \\ 0 & \frac{1}{a} & -\frac{c}{a} & 1 \end{array} \right) \] ### Step 3: Normalize the second row Now, we will normalize the second row by multiplying it by \( a \): \[ R_2 \rightarrow a R_2 \] This gives us: \[ \left( \begin{array}{cc|cc} 1 & \frac{b}{a} & \frac{1}{a} & 0 \\ 0 & 1 & -c & a \end{array} \right) \] ### Step 4: Eliminate the second element of the first row Next, we eliminate the \( \frac{b}{a} \) in the first row: \[ R_1 \rightarrow R_1 - \frac{b}{a} R_2 \] This results in: \[ \left( \begin{array}{cc|cc} 1 & 0 & \frac{1}{a} + \frac{bc}{a} & -\frac{b}{a} \\ 0 & 1 & -c & a \end{array} \right) \] ### Final Result The final augmented matrix is: \[ \left( \begin{array}{cc|cc} 1 & 0 & \frac{1 + bc}{a} & -b \\ 0 & 1 & -c & a \end{array} \right) \] Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} \frac{1 + bc}{a} & -b \\ -c & a \end{pmatrix} \]

To find the inverse of the matrix \( A = \begin{pmatrix} a & b \\ c & \frac{1 + bc}{a} \end{pmatrix} \) using elementary transformations, we will augment the matrix \( A \) with the identity matrix \( I \) and perform row operations to transform \( A \) into \( I \). The augmented matrix will look like this: \[ \left( \begin{array}{cc|cc} a & b & 1 & 0 \\ c & \frac{1 + bc}{a} & 0 & 1 \end{array} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Exercises|65 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.4|12 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Using elementary transformations, find the inverse of the matrix [1 3 2 7]

Using elementary transformations, find the inverse of the matrix [1 3 2 7]

Using elementary transformations, find the inverse of the matrix [[2, 1],[ 1, 1]]

Using elementary transformations, find the inverse of the matrix [[1,-1],[ 2, 3]]

Using elementary transformations, find the inverse of the matrix [[3,-1],[-4, 2]]

Using elementary transformations, find the inverse of the matrix [[2,-3],[-1, 2]]

Using elementary transformations, find the inverse of the matrix [[3, 1], [5, 2]]

Using elementary transformations, find the inverse of the matrix [[3,-1],[-4, 2]]

Using elementary transformations, find the inverse of the matrix [[2 ,1],[ 4, 2]]

Using elementary transformations, find the inverse of the matrix [[2, 1],[ 7, 4]]

CENGAGE ENGLISH-MATRICES-CAE 13.5
  1. By the method of matrix inversion, solve the system. [(1,1,1),(2,5,7...

    Text Solution

    |

  2. Let A=[[2,0,7] , [0,1,0], [1,-2,1]] and B=[[-x,14x,7x] , [0,1,0] , [x,...

    Text Solution

    |

  3. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  4. For the matrix A=[3 1 7 5] , find x and y so that A^2+x I=y Adot

    Text Solution

    |

  5. If A^(3)=O, then prove that (I-A)^(-1) =I+A+A^(2).

    Text Solution

    |

  6. If A =[[cos alpha,-sin alpha],[sinalpha, cos alpha]] , B= [[cos 2 beta...

    Text Solution

    |

  7. If A=[(1,2,2),(2,2,3),(1,-1,3)], C=[(2,1,1),(2,2,1),(1,1,1)], D=[(10),...

    Text Solution

    |

  8. If A is a 2xx2 matrix such that A^(2)-4A+3I=O, then prove that (A+3I)^...

    Text Solution

    |

  9. For two unimobular complex numbers z(1) and z(2), find [(bar(z)(1),-z(...

    Text Solution

    |

  10. Prove that inverse of a skew-symmetric matrix (if it exists) is skew-s...

    Text Solution

    |

  11. If square matrix a is orthogonal, then prove that its inverse is also ...

    Text Solution

    |

  12. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |

  13. Prove that ("adj. "A)^(-1)=("adj. "A^(-1)).

    Text Solution

    |

  14. Using elementary transformation, find the inverse of the matrix A=[(a,...

    Text Solution

    |

  15. If A and P are the square matrices of the same order and if P be inver...

    Text Solution

    |

  16. Show that the characteristics roots of an idempotent matris are either...

    Text Solution

    |

  17. If alpha is a characteristic root of a nonsin-gular matrix, then prove...

    Text Solution

    |