Home
Class 12
MATHS
Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfie...

Let `A=[(1,0,0),(1,0,1),(0,1,0)]` satisfies `A^(n)=A^(n-2)+A^(2)-I` for `n ge 3`. And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal.
Further consider a matrix `underset(3xx3)(uu)` with its column as `uu_(1), uu_(2), uu_(3)` such that
`A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)]`
Then answer the following question :
Trace of `A^(50)` equals

A

0

B

1

C

`-1`

D

25

Text Solution

Verified by Experts

The correct Answer is:
B

`A^(n)-A^(n-2)=A^(2)-I implies A^(50)=A^(48)+A^(2)-I`
Further,
`A^(48)=A^(46)+A^(2)-I`
`A^(46)=A^(44)+A^(2)-I`
`{:(vdots,vdots,vdots,vdots):}`
`(A^(4)=A^(2)+A^(2)-I)/(A^(50)=25 A^(2)-24I)`
Here,
`A^(2)=[(1,0,0),(1,0,1),(0,1,0)][(1,0,0),(1,0,1),(0,1,0)]=[(1,0,0),(1,1,0),(1,0,1)]`
`implies A^(50)=[(25,0,0),(25,25,0),(25,0,25)]-24 [(1,0,0),(0,1,0),(0,0,1)]`
`=[(1,0,0),(25,1,0),(25,0,1)]`
`:. |A^(50)|=1`
Also, `tr(A^(50))=1+1+1=3`. Further,
`[(1,0,0),(25,1,0),(25,0,1)][(x),(y),(z)]=[(1),(25),(25)]implies [(x),(y),(z)]= uu_(1)=[(1),(0),(0)]`
Similarly,
`uu_(2)=[(0),(1),(0)]` and `uu_(3)=[(0),(0),(1)]implies uu=[(1,0,0),(0,1,0),(0,0,1)]`, i.e., `|uu|=1`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Matrix Type|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Numerical Value Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : The value of |uu| equals

Let A = [[1,0,0],[1,0,1], [0,1,0]] " satisfies " A^(n) = A^(n-2) + A^(2 ) -I for nge 3 and consider matrix underset(3xx3)(U) with its columns as U_(1), U_(2), U_(3), such that A^(50)U_(1)=[[1],[25],[25]],A^(50) U_(2)=[[0],[1],[0]]and A^(50) U_(3)[[0],[0],[1]] The value of abs(A^(50)) equals

Consida square matrix A of order 2 which has its elements as 0, 1, 2 and 4. Let N denotes the number of such matrices.

Let A=[(2,0,7),(0,1,0),(1,-2,1)] and B=[(-k,14k,7k),(0,1,0),(k,-4k,-2k)] . If AB=I , where I is an identity matrix of order 3, then the sum of all elements of matrix B is equal to

Let A+2B=[{:(2,4,0),(6,-3,3),(-5,3,5):}] and 2A-B=[{:(6,-2,4),(6,1,5),(6,3,4):}] , then tr (A) - tr (B) is equal to (where , tr (A) =n trace of matrix x A i.e. . Sum of the principle diagonal elements of matrix A)

Consider a matrix A=[(0,1,2),(0,-3,0),(1,1,1)]. If 6A^(-1)=aA^(2)+bA+cI , where a, b, c in and I is an identity matrix, then a+2b+3c is equal to

If A=[{:(1,0,-1),(2,1,3),(0,1, 1):}] then verify that A^(2)+A=A(A+I) , where I is 3xx3 unit matrix.

The element in the first row and third column of the inverse of the matrix [(1,2,-3),(0,1,2),(0,0,1)] is

If A=[(0,2,-3),(-2,0,-1),(3,1,0)] then A is (A) diagonal matrix (B) symmetric matix (C) skew symmetric matrix (D) none of these

Let A = [(1,0,0), (2,1,0), (3,2,1)], and U_1, U_2 and U_3 are columns of a 3 xx 3 matrix U . If column matrices U_1, U_2 and U_3 satisfy AU_1 = [(1),(0),(0)], AU_2 = [(2),(3),(0)], AU_3 = [(2),(3),(1)] then the sum of the elements of the matrix U^(-1) is

CENGAGE ENGLISH-MATRICES-Linked Comprehension Type
  1. Consider an arbitarary 3xx3 non-singular matrix A[a("ij")]. A maxtrix ...

    Text Solution

    |

  2. Let A=[a("ij")] be 3xx3 matrix and B=[b("ij")] be 3xx3 matrix such tha...

    Text Solution

    |

  3. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  4. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  5. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  6. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  7. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  8. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  9. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  10. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  11. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  12. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  13. Let A be the set of all 3 xx 3 symmetric matrices all of whose entrie...

    Text Solution

    |

  14. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  15. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  16. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  17. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  18. Let p be an odd prime number and Tp, be the following set of 2 xx 2 ma...

    Text Solution

    |

  19. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |

  20. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |