Home
Class 12
MATHS
Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfie...

Let `A=[(1,0,0),(1,0,1),(0,1,0)]` satisfies `A^(n)=A^(n-2)+A^(2)-I` for `n ge 3`. And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal.
Further consider a matrix `underset(3xx3)(uu)` with its column as `uu_(1), uu_(2), uu_(3)` such that
`A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)]`
Then answer the following question :
The value of `|uu|` equals

A

0

B

1

C

2

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, let's go through the solution systematically. ### Step 1: Understand the given matrix A and the recurrence relation We have the matrix: \[ A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \] The recurrence relation given is: \[ A^n = A^{n-2} + A^2 - I \quad \text{for } n \geq 3 \] where \( I \) is the identity matrix. ### Step 2: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \] Calculating the multiplication: - First row: \( (1*1 + 0*1 + 0*0, 1*0 + 0*0 + 0*1, 1*0 + 0*1 + 0*0) = (1, 0, 0) \) - Second row: \( (1*1 + 0*1 + 1*0, 1*0 + 0*0 + 1*1, 1*0 + 0*1 + 1*0) = (1, 1, 1) \) - Third row: \( (0*1 + 1*1 + 0*0, 0*0 + 1*0 + 0*1, 0*0 + 1*1 + 0*0) = (1, 0, 0) \) Thus, we have: \[ A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 3: Use the recurrence relation to find \( A^{50} \) Using the recurrence relation, we can find \( A^{50} \): \[ A^{50} = A^{48} + A^2 - I \] We need to find a pattern or a general formula for \( A^n \) using the recurrence relation. Continuing this process, we can derive: \[ A^{n} = kA^2 + (n-2)I \] for some integer \( k \). ### Step 4: Find \( A^{50} \) Using the derived formula: \[ A^{50} = 25A^2 - 24I \] Substituting \( A^2 \): \[ A^{50} = 25 \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} - 24 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Calculating this gives: \[ A^{50} = \begin{pmatrix} 25 & 0 & 0 \\ 25 & 25 & 25 \\ 0 & 0 & 25 \end{pmatrix} - \begin{pmatrix} 24 & 0 & 0 \\ 0 & 24 & 0 \\ 0 & 0 & 24 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 25 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 5: Solve for \( U \) We have: \[ A^{50} U_1 = \begin{pmatrix} 1 \\ 25 \\ 25 \end{pmatrix}, \quad A^{50} U_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad A^{50} U_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \] Let \( U_1 = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \). Setting up the equations: 1. \( A^{50} U_1 = \begin{pmatrix} 1 \\ 25 \\ 25 \end{pmatrix} \) leads to \( U_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \) 2. \( U_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \) 3. \( U_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \) ### Step 6: Form the matrix \( U \) Thus, the matrix \( U \) is: \[ U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 7: Calculate the determinant of \( U \) The determinant of \( U \) is: \[ |U| = 1 \] ### Final Answer The value of \( |U| \) equals **1**.

To solve the problem step by step, let's go through the solution systematically. ### Step 1: Understand the given matrix A and the recurrence relation We have the matrix: \[ A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Matrix Type|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Numerical Value Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : Trace of A^(50) equals

Let A = [[1,0,0],[1,0,1], [0,1,0]] " satisfies " A^(n) = A^(n-2) + A^(2 ) -I for nge 3 and consider matrix underset(3xx3)(U) with its columns as U_(1), U_(2), U_(3), such that A^(50)U_(1)=[[1],[25],[25]],A^(50) U_(2)=[[0],[1],[0]]and A^(50) U_(3)[[0],[0],[1]] The value of abs(A^(50)) equals

Consida square matrix A of order 2 which has its elements as 0, 1, 2 and 4. Let N denotes the number of such matrices.

Let A=[(2,0,7),(0,1,0),(1,-2,1)] and B=[(-k,14k,7k),(0,1,0),(k,-4k,-2k)] . If AB=I , where I is an identity matrix of order 3, then the sum of all elements of matrix B is equal to

Let A+2B=[{:(2,4,0),(6,-3,3),(-5,3,5):}] and 2A-B=[{:(6,-2,4),(6,1,5),(6,3,4):}] , then tr (A) - tr (B) is equal to (where , tr (A) =n trace of matrix x A i.e. . Sum of the principle diagonal elements of matrix A)

Consider a matrix A=[(0,1,2),(0,-3,0),(1,1,1)]. If 6A^(-1)=aA^(2)+bA+cI , where a, b, c in and I is an identity matrix, then a+2b+3c is equal to

If A=[{:(1,0,-1),(2,1,3),(0,1, 1):}] then verify that A^(2)+A=A(A+I) , where I is 3xx3 unit matrix.

The element in the first row and third column of the inverse of the matrix [(1,2,-3),(0,1,2),(0,0,1)] is

If A=[(0,2,-3),(-2,0,-1),(3,1,0)] then A is (A) diagonal matrix (B) symmetric matix (C) skew symmetric matrix (D) none of these

Let A = [(1,0,0), (2,1,0), (3,2,1)], and U_1, U_2 and U_3 are columns of a 3 xx 3 matrix U . If column matrices U_1, U_2 and U_3 satisfy AU_1 = [(1),(0),(0)], AU_2 = [(2),(3),(0)], AU_3 = [(2),(3),(1)] then the sum of the elements of the matrix U^(-1) is

CENGAGE ENGLISH-MATRICES-Linked Comprehension Type
  1. Let A=[a("ij")] be 3xx3 matrix and B=[b("ij")] be 3xx3 matrix such tha...

    Text Solution

    |

  2. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  3. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  4. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  5. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  6. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  7. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  8. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  9. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  10. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  11. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  12. Let A be the set of all 3 xx 3 symmetric matrices all of whose entrie...

    Text Solution

    |

  13. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  14. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  15. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  16. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  17. Let p be an odd prime number and Tp, be the following set of 2 xx 2 ma...

    Text Solution

    |

  18. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |

  19. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |

  20. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |