Home
Class 12
MATHS
Let for A=[(1,0,0),(2,1,0),(3,2,1)], the...

Let for `A=[(1,0,0),(2,1,0),(3,2,1)]`, there be three row matrices `R_(1), R_(2)` and `R_(3)`, satifying the relations, `R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)]` and `R_(3)A=[(2,3,1)]`. If B is square matrix of order 3 with rows `R_(1), R_(2)` and `R_(3)` in order, then
The value of det. `(2A^(100) B^(3)-A^(99) B^(4))` is

A

`-2`

B

`-1`

C

2

D

-27

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the value of the determinant \( \det(2A^{100} B^{3} - A^{99} B^{4}) \) where \( A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \) and \( B \) is a matrix formed by the row matrices \( R_1, R_2, R_3 \). ### Step 1: Find the determinant of matrix \( A \) The determinant of matrix \( A \) can be calculated as follows: \[ \det(A) = 1 \cdot \det\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} - 0 + 0 = 1 \cdot (1 \cdot 1 - 0 \cdot 2) = 1 \] ### Step 2: Define the row matrices \( R_1, R_2, R_3 \) From the problem, we know: - \( R_1 A = (1, 0, 0) \) - \( R_2 A = (2, 3, 0) \) - \( R_3 A = (2, 3, 1) \) This implies that \( R_1, R_2, R_3 \) are the rows of matrix \( B \). ### Step 3: Formulate the matrix \( B \) Let \( B = \begin{pmatrix} R_1 \\ R_2 \\ R_3 \end{pmatrix} \). Since \( R_1, R_2, R_3 \) are defined by their relations with \( A \), we can express \( B \) as: \[ B = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 2 & 3 & 1 \end{pmatrix} \] ### Step 4: Find the determinant of matrix \( B \) Using the determinant formula for a \( 3 \times 3 \) matrix: \[ \det(B) = 1 \cdot \det\begin{pmatrix} 3 & 0 \\ 3 & 1 \end{pmatrix} - 0 + 0 = 1(3 \cdot 1 - 0 \cdot 3) = 3 \] ### Step 5: Use the properties of determinants We need to calculate \( \det(2A^{100} B^{3} - A^{99} B^{4}) \). We can factor out \( A^{99} \): \[ \det(2A^{100} B^{3} - A^{99} B^{4}) = \det(A^{99}) \cdot \det(2A B^{3} - B^{4}) \] Using the property \( \det(A^n) = (\det(A))^n \): \[ \det(A^{99}) = (\det(A))^{99} = 1^{99} = 1 \] ### Step 6: Calculate \( \det(2A B^{3} - B^{4}) \) Using the properties of determinants: \[ \det(2A) = 2^3 \cdot \det(A) = 8 \cdot 1 = 8 \] Then, we have: \[ \det(B^{3}) = (\det(B))^3 = 3^3 = 27 \] Now, we need to compute \( \det(2A B^{3}) \): \[ \det(2A B^{3}) = \det(2A) \cdot \det(B^{3}) = 8 \cdot 27 = 216 \] Next, we need to compute \( \det(B^{4}) \): \[ \det(B^{4}) = (\det(B))^4 = 3^4 = 81 \] ### Step 7: Final determinant calculation Now we can compute: \[ \det(2A B^{3} - B^{4}) = \det(2A B^{3}) - \det(B^{4}) = 216 - 81 = 135 \] ### Step 8: Final determinant value Thus, the final value of the determinant is: \[ \det(2A^{100} B^{3} - A^{99} B^{4}) = 1 \cdot 135 = 135 \] ### Conclusion The value of \( \det(2A^{100} B^{3} - A^{99} B^{4}) \) is **135**.

To solve the given problem, we need to find the value of the determinant \( \det(2A^{100} B^{3} - A^{99} B^{4}) \) where \( A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \) and \( B \) is a matrix formed by the row matrices \( R_1, R_2, R_3 \). ### Step 1: Find the determinant of matrix \( A \) The determinant of matrix \( A \) can be calculated as follows: \[ \det(A) = 1 \cdot \det\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} - 0 + 0 = 1 \cdot (1 \cdot 1 - 0 \cdot 2) = 1 ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Matrix Type|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Numerical Value Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

In the situation shown, resistance R_(1),R_(2) and R_(3) are in the ratio 3:2:1 , then

The value of sum_(r=0)^(3n-1)(-1)^r ^(6n)C_(2r+1)3^r is

In triangle ABC, if r_(1)+r_(2)=3R and r_(2)+r_(3)=2R , then

On using the elementary row operation R_(1) to R_(1)-3R_(2) in the matrix equation [{:(4,2),(3,3):}]=[{:(1,2),(0,3):}] [{:(2,0),(1,1):}] we get

Apply elementary transformation R_2->R_2-3R_1 in the matrix equation [(11,-6),( 6,-4)]=[(1, 3), (0, 2)][(2, 0),( 3,-2)]

If r,r_(1) ,r_(2), r_(3) have their usual meanings , the value of 1/(r_(1))+1/(r_(2))+1/(r_(3)) , is

If A=[{:(2,3),(-1,-2):}] and B=sum_(r=1)^(10)A^r , then the value of det (B)is equal to

Let A=[(1, 2),(3, 4)] and B=[(p,q),(r,s)] are two matrices such that AB = BA and r ne 0 , then the value of (3p-3s)/(5q-4r) is equal to

In a triangle , if r_(1) = 2r_(2) = 3r_(3) , then a/b + b/c + c/a is equal to

Calculate equivalent resistance of two resistors R_(1) and R_(2) in parallel where, R_(1) = (6+-0.2) ohm and R_2 = (3+-0.1)ohm

CENGAGE ENGLISH-MATRICES-Linked Comprehension Type
  1. Let A=[a("ij")] be 3xx3 matrix and B=[b("ij")] be 3xx3 matrix such tha...

    Text Solution

    |

  2. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  3. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  4. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  5. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  6. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  7. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  8. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  9. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  10. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  11. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  12. Let A be the set of all 3 xx 3 symmetric matrices all of whose entrie...

    Text Solution

    |

  13. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  14. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  15. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  16. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  17. Let p be an odd prime number and Tp, be the following set of 2 xx 2 ma...

    Text Solution

    |

  18. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |

  19. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |

  20. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |