Home
Class 12
MATHS
A and B are square matrices such that de...

A and B are square matrices such that det. `(A)=1, B B^(T)=I`, det `(B) gt 0`, and A( adj. A + adj. B)=B.
The value of det `(A+B)` is

A

`-2`

B

`-1`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \text{det}(A + B) \) given the conditions on matrices \( A \) and \( B \). ### Step-by-Step Solution: 1. **Given Information**: - \( \text{det}(A) = 1 \) - \( B B^T = I \) (which implies \( B \) is an orthogonal matrix) - \( \text{det}(B) > 0 \) - \( A (\text{adj}(A) + \text{adj}(B)) = B \) 2. **Finding \( \text{det}(B) \)**: Since \( B B^T = I \), we can take the determinant on both sides: \[ \text{det}(B) \cdot \text{det}(B^T) = \text{det}(I) \] Since \( \text{det}(B^T) = \text{det}(B) \), we have: \[ \text{det}(B)^2 = 1 \] Given that \( \text{det}(B) > 0 \), we conclude: \[ \text{det}(B) = 1 \] 3. **Using the property of adjugate**: We know that: \[ A \cdot \text{adj}(A) = \text{det}(A) \cdot I = 1 \cdot I = I \] Therefore, \( \text{adj}(A) = A^{-1} \). 4. **Finding \( \text{adj}(B) \)**: Similarly, since \( \text{det}(B) = 1 \): \[ \text{adj}(B) = \text{det}(B) \cdot B^{-1} = 1 \cdot B^{-1} = B^{-1} \] 5. **Substituting into the equation**: Now substituting \( \text{adj}(A) \) and \( \text{adj}(B) \) into the equation: \[ A (A^{-1} + B^{-1}) = B \] This simplifies to: \[ A A^{-1} + A B^{-1} = B \] Which simplifies to: \[ I + A B^{-1} = B \] Rearranging gives: \[ A B^{-1} = B - I \] 6. **Taking determinants**: Now we take the determinant of both sides: \[ \text{det}(A B^{-1}) = \text{det}(B - I) \] Using the property of determinants: \[ \text{det}(A) \cdot \text{det}(B^{-1}) = \text{det}(B - I) \] Since \( \text{det}(A) = 1 \) and \( \text{det}(B^{-1}) = \frac{1}{\text{det}(B)} = 1 \): \[ 1 \cdot 1 = \text{det}(B - I) \] Thus: \[ \text{det}(B - I) = 1 \] 7. **Finding \( \text{det}(A + B) \)**: We can use the property of determinants that states: \[ \text{det}(A + B) = \text{det}(A) + \text{det}(B) + \text{det}(A B) \] Since \( \text{det}(A) = 1 \) and \( \text{det}(B) = 1 \): \[ \text{det}(A + B) = 1 + 1 + \text{det}(A B) \] We know \( \text{det}(A B) = \text{det}(A) \cdot \text{det}(B) = 1 \cdot 1 = 1 \): \[ \text{det}(A + B) = 1 + 1 + 1 = 3 \] ### Final Result: Thus, the value of \( \text{det}(A + B) \) is \( \boxed{3} \).

To solve the problem, we need to find the value of \( \text{det}(A + B) \) given the conditions on matrices \( A \) and \( B \). ### Step-by-Step Solution: 1. **Given Information**: - \( \text{det}(A) = 1 \) - \( B B^T = I \) (which implies \( B \) is an orthogonal matrix) - \( \text{det}(B) > 0 \) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Matrix Type|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Numerical Value Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

A and B are square matrices such that det. (A)=1, B B^(T)=I , det (B) gt 0 ,B + A= B^(2) and A( adj. A + adj. B)=B. AB^(-1)=

If A and B are two square matrices such that B=-A^(-1)BA , then (A+B)^(2) is equal to

Let A and B are two square matrices of order 3 such that det. (A)=3 and det. (B)=2 , then the value of det. (("adj. "(B^(-1) A^(-1)))^(-1)) is equal to _______ .

if A and B are squares matrices such that A^(2006)=O and A B=A+B , then ,"det"(B) equals a. 0 b. 1 c. -1 d. none of these

If A and B are square matrices of order 3 such that |A|=-1 , |B|=3 , then find the value of |3A B| .

if Aa n dB are squares matrices such that A^(2006)=Oa n dA B=A+B ,t h e n"det"(B) equals 0 b. 1 c. -1 d. none of these

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

Let A be a square matrix of order 3 such that det. (A)=1/3 , then the value of det. ("adj. "A^(-1)) is

If A and B are square matrices of order 3 such that A^(3)=8 B^(3)=8I and det. (AB-A-2B+2I) ne 0 , then identify the correct statement(s), where I is identity matrix of order 3.

A, B and C are three square matrices of order 3 such that A= diag (x, y, z) , det (B)=4 and det (C)=2 , where x, y, z in I^(+) . If det (adj (adj (ABC))) =2^(16)xx3^(8)xx7^(4) , then the number of distinct possible matrices A is ________ .

CENGAGE ENGLISH-MATRICES-Linked Comprehension Type
  1. Let A=[a("ij")] be 3xx3 matrix and B=[b("ij")] be 3xx3 matrix such tha...

    Text Solution

    |

  2. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  3. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  4. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  5. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  6. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  7. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  8. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  9. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  10. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  11. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  12. Let A be the set of all 3 xx 3 symmetric matrices all of whose entrie...

    Text Solution

    |

  13. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  14. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  15. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  16. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  17. Let p be an odd prime number and Tp, be the following set of 2 xx 2 ma...

    Text Solution

    |

  18. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |

  19. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |

  20. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |