Home
Class 12
MATHS
Let A be an mxxn matrix. If there exists...

Let A be an `mxxn` matrix. If there exists a matrix L of type `nxxm` such that `LA=I_(n)`, then L is called left inverse of A. Which of the following matrices is NOT left inverse of matrix `[(1,-1),(1,1),(2,3)]?`

A

`[(1/2,1/2,0),(-1/2,1/2,0)]`

B

`[(2,-7,3),(-1/2,1/2,0)]`

C

`[(-1/2,1/2,0),(-1/2,1/2,0)]`

D

`[(0,3,-1),(-1/2,1/2,0)]`

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the given matrices is NOT a left inverse of the matrix \( A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{pmatrix} \), we need to check each option to see if it satisfies the condition \( LA = I_n \), where \( I_n \) is the identity matrix of order \( n \). ### Step-by-Step Solution: 1. **Identify the Matrix A**: \[ A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{pmatrix} \] This is a \( 3 \times 2 \) matrix. 2. **Identify the Identity Matrix \( I_n \)**: Since \( A \) is \( 3 \times 2 \), the left inverse \( L \) must be \( 2 \times 3 \) and the identity matrix \( I_n \) will be \( 2 \times 2 \): \[ I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] 3. **Check Each Option**: We will multiply each option \( L \) by \( A \) and check if the result is \( I_2 \). **Option A**: \[ L_A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} \] \[ L_A \cdot A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{pmatrix} \] Calculate the product: - First row: \( \frac{1}{2}(1) + \frac{1}{2}(1) + 0(2) = 1 \) - Second row: \( -\frac{1}{2}(1) + \frac{1}{2}(1) + 0(2) = 0 \) - Result: \( \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2 \) **Option B**: \[ L_B = \begin{pmatrix} 2 & -7 & 3 \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} \] Calculate \( L_B \cdot A \): - First row: \( 2(1) + (-7)(1) + 3(2) = 2 - 7 + 6 = 1 \) - Second row: \( -\frac{1}{2}(1) + \frac{1}{2}(1) + 0(2) = 0 \) - Result: \( \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2 \) **Option C**: \[ L_C = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} \] Calculate \( L_C \cdot A \): - First row: \( -\frac{1}{2}(1) + \frac{1}{2}(1) + 0(2) = 0 \) - Second row: \( -\frac{1}{2}(1) + \frac{1}{2}(1) + 0(2) = 0 \) - Result: \( \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \neq I_2 \) **Option D**: \[ L_D = \begin{pmatrix} 0 & 3 & -1 \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} \] Calculate \( L_D \cdot A \): - First row: \( 0(1) + 3(1) + (-1)(2) = 3 - 2 = 1 \) - Second row: \( -\frac{1}{2}(1) + \frac{1}{2}(1) + 0(2) = 0 \) - Result: \( \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2 \) 4. **Conclusion**: The matrix that is NOT a left inverse of \( A \) is **Option C**.

To determine which of the given matrices is NOT a left inverse of the matrix \( A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{pmatrix} \), we need to check each option to see if it satisfies the condition \( LA = I_n \), where \( I_n \) is the identity matrix of order \( n \). ### Step-by-Step Solution: 1. **Identify the Matrix A**: \[ A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Matrix Type|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Numerical Value Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let A be an mxxn matrix. If there exists a matrix L of type nxxm such that LA=I_(n) , then L is called left inverse of A. Similarly, if there exists a matrix R of type nxxm such that AR=I_(m) , then R is called right inverse of A. For example, to find right inverse of matrix A=[(1,-1),(1,1),(2,3)] , we take R=[(x,y,x),(u,v,w)] and solve AR=I_(3) , i.e., [(1,-1),(1,1),(2,3)][(x,y,z),(u,v,w)]=[(1,0,0),(0,1,0),(0,0,1)] {:(implies,x-u=1,y-v=0,z-w=0),(,x+u=0,y+v=1,z+w=0),(,2x+3u=0,2y+3v=0,2z+3w=1):} As this system of equations is inconsistent, we say there is no right inverse for matrix A. For which of the following matrices, the number of left inverses is greater than the number of right inverses ?

Let A be an mxxn matrix. If there exists a matrix L of type nxxm such that LA=I_(n) , then L is called left inverse of A. Similarly, if there exists a matrix R of type nxxm such that AR=I_(m) , then R is called right inverse of A. For example, to find right inverse of matrix A=[(1,-1),(1,1),(2,3)] , we take R=[(x,y,x),(u,v,w)] and solve AR=I_(3) , i.e., [(1,-1),(1,1),(2,3)][(x,y,z),(u,v,w)]=[(1,0,0),(0,1,0),(0,0,1)] {:(implies,x-u=1,y-v=0,z-w=0),(,x+u=0,y+v=1,z+w=0),(,2x+3u=0,2y+3v=0,2z+3w=1):} As this system of equations is inconsistent, we say there is no right inverse for matrix A. The number of right inverses for the matrix [(1,-1,2),(2,-1,1)] is

Find the inverse of the matrix A= [(3,1),(4,2)]

find the inverse of the following matrix : [{:(1,-1),(2,3):}]

Find the inverse of the matrix |[2,-1], [3, 4]| .

The inverse of the matrix {:[(1,3),(3,10)]:} is equal to

The number of right inverse of the matrix is [(1,-1, 2),( 2,-1, 1)]

Obtain the inverse of the following matrix, using elementary operations: A=[(3,0,-1),(2,3,0),(0,4,1)]

Obtain the inverse of the following matrix, using elementary operations: A=[(3,0,-1),(2,3,0),(0,4,1)]

Choose the correct answer from the following : The inverse of matrix |{:(1,3),(2,-1):}|is:

CENGAGE ENGLISH-MATRICES-Linked Comprehension Type
  1. Let A=[a("ij")] be 3xx3 matrix and B=[b("ij")] be 3xx3 matrix such tha...

    Text Solution

    |

  2. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  3. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  4. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ...

    Text Solution

    |

  5. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  6. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  7. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  8. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  9. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  10. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  11. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  12. Let A be the set of all 3 xx 3 symmetric matrices all of whose entrie...

    Text Solution

    |

  13. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  14. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  15. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  16. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  17. Let p be an odd prime number and Tp, be the following set of 2 xx 2 ma...

    Text Solution

    |

  18. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |

  19. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |

  20. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |