Home
Class 12
MATHS
If [a b c1-a] is an idempotent matrix an...

If `[a b c1-a]` is an idempotent matrix and `f(x)=x-^2=b c=1//4` , then the value of `1//f(a)` is ______.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to analyze the given information and derive the required result. ### Step 1: Understanding Idempotent Matrix An idempotent matrix \( M \) satisfies the property \( M^2 = M \). Given the matrix: \[ M = \begin{bmatrix} a & b \\ c & 1-a \end{bmatrix} \] we need to compute \( M^2 \) and set it equal to \( M \). ### Step 2: Calculate \( M^2 \) Calculating \( M^2 \): \[ M^2 = \begin{bmatrix} a & b \\ c & 1-a \end{bmatrix} \begin{bmatrix} a & b \\ c & 1-a \end{bmatrix} = \begin{bmatrix} a^2 + bc & ab + b(1-a) \\ ac + c(1-a) & bc + (1-a)^2 \end{bmatrix} \] ### Step 3: Set \( M^2 = M \) Now, equate \( M^2 \) to \( M \): \[ \begin{bmatrix} a^2 + bc & ab + b(1-a) \\ ac + c(1-a) & bc + (1-a)^2 \end{bmatrix} = \begin{bmatrix} a & b \\ c & 1-a \end{bmatrix} \] From this, we can derive the following equations: 1. \( a^2 + bc = a \) 2. \( ab + b(1-a) = b \) 3. \( ac + c(1-a) = c \) 4. \( bc + (1-a)^2 = 1-a \) ### Step 4: Simplifying the Equations From equation 1: \[ a^2 + bc = a \implies a^2 - a + bc = 0 \] From equation 2: \[ ab + b - ab = b \implies b = b \quad \text{(this is always true)} \] From equation 3: \[ ac + c - ac = c \implies c = c \quad \text{(this is always true)} \] From equation 4: \[ bc + (1-a)^2 = 1-a \implies (1-a)^2 = 1-a - bc \] ### Step 5: Substitute \( bc = \frac{1}{4} \) We know from the problem statement that \( bc = \frac{1}{4} \). Substitute this into the equation: \[ (1-a)^2 = 1-a - \frac{1}{4} \] This simplifies to: \[ (1-a)^2 = \frac{3}{4} - a \] ### Step 6: Solve for \( f(a) \) Now, we need to find \( f(a) = a - a^2 \). From the equation \( a^2 - a + \frac{1}{4} = 0 \), we can find \( f(a) \): \[ f(a) = \frac{1}{4} \] ### Step 7: Find \( \frac{1}{f(a)} \) Now, we need to calculate \( \frac{1}{f(a)} \): \[ \frac{1}{f(a)} = \frac{1}{\frac{1}{4}} = 4 \] ### Final Answer Thus, the value of \( \frac{1}{f(a)} \) is: \[ \boxed{4} \]

To solve the problem step by step, we need to analyze the given information and derive the required result. ### Step 1: Understanding Idempotent Matrix An idempotent matrix \( M \) satisfies the property \( M^2 = M \). Given the matrix: \[ M = \begin{bmatrix} a & b \\ c & 1-a \end{bmatrix} \] we need to compute \( M^2 \) and set it equal to \( M \). ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Archives (Single correct Answer type)|11 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Matrix Type|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If [[a, b],[ c,1-a]] is an idempotent matrix and f(x)=x-x^2 , bc=1/4 , then the value of 1//f(a) is ______.

If f(x)=ax^(2)+bx+c and f(x+1)=f(x)+x+1 , then the value of (a+b) is __

If B=int(1)/(e^(x)+1)dx=-f(x)+C , where C is the constant of integration and e^(f(0))=2 , then the value of e^(f(-1)) is

The function f: RvecR satisfies f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime)(x^2) for all real xdot Given that f(1)=1 and f^(1)=8 , then the value of f^(prime)(1)+f^(1) is 2 b. 4 c. 6 d. 8

Function f is defined by f(x)=(3)/(2)x+c . If f(6)=1 , what is the value of f(c) ?

Let f(x) be continuous functions f: RvecR satisfying f(0)=1a n df(2x)-f(x)=xdot Then the value of f(3) is 2 b. 3 c. 4 d. 5

Let f(x) be continuous functions f: RvecR satisfying f(0)=1a n df(2x)-f(x)=xdot Then the value of f(3) is 2 b. 3 c. 4 d. 5

Suppose f is a real function satisfying f(x+f(x))=4f(x) and f(1)=4. Then the value of f(21) is a). 16 b). 21 c). 64 d). 105

Suppose f(x) =[a+b x , x 1] and lim f(x) where x tends to 1 f(x) = f(1) then value of a and b?

In the Mean value theorem f(b)-f(a)=(b-a)f'(c), if a=4, b=9 and f(x)= sqrtx , then the value of c is

CENGAGE ENGLISH-MATRICES-Numerical Value Type
  1. A=[[0 ,1],[ 3 ,0]]a n d(A^8+A^6+A^4+A^2+I) V=[[0] ,[11]](w h e r eIi s...

    Text Solution

    |

  2. If [a b c1-a] is an idempotent matrix and f(x)=x-^2=b c=1//4 , then th...

    Text Solution

    |

  3. Let x be the solution set of equation A^x=Idot,w h e r eA+[0 1-1 4-3 4...

    Text Solution

    |

  4. A=[1t a n x-t a n x1]a n df(x) is defined as f(x)=d e tdot(A^T A^(-1))...

    Text Solution

    |

  5. The equation [[1, 2 ,2 ],[1 ,3, 4],[ 2, 4,k]][[x ,y, z]] =[[0,0, 0]] h...

    Text Solution

    |

  6. If A is an idempotent matrix satisfying, (I-0. 4 A)^(-1)=I-alphaA ,w h...

    Text Solution

    |

  7. Let A=[(3x^2),(1),(6x)],B=[(a,b,c)],and C=[((x+2)^2,5x^2,2x),(5x^2,2x,...

    Text Solution

    |

  8. Let A be the set of all 3xx3 skew-symmetri matrices whose entries are ...

    Text Solution

    |

  9. Let A=[a("ij")](3xx3) be a matrix such that A A^(T)=4I and a("ij")+2c(...

    Text Solution

    |

  10. Let S be the set which contains all possible vaues fo I ,m ,n ,p ,q ,r...

    Text Solution

    |

  11. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  12. If A is a square matrix of order 3 such that |A|=2,t h e n|(a d jA^(-1...

    Text Solution

    |

  13. If A and B are two matrices of order 3 such that AB=O and A^(2)+B=I, t...

    Text Solution

    |

  14. If a, b, and c are integers, then number of matrices A=[(a,b,c),(b,c,a...

    Text Solution

    |

  15. Let A=[a("ij")] be 3xx3 matrix and B=[b("ij")] be 3xx3 matrix such tha...

    Text Solution

    |

  16. A square matrix M of order 3 satisfies M^(2)=I-M, where I is an identi...

    Text Solution

    |

  17. Let A=[a("ij")](3xx3), B=[b("ij")](3xx3) and C=[c("ij")](3xx3) be any ...

    Text Solution

    |

  18. If A is a square matrix of order 2xx2 such that |A|=27, then sum of th...

    Text Solution

    |

  19. If A is a aquare matrix of order 2 and det. A=10, then ((tr. A)^(2)-tr...

    Text Solution

    |

  20. Let A and B are two square matrices of order 3 such that det. (A)=3 an...

    Text Solution

    |