Home
Class 12
MATHS
Let x be the solution set of equation A^...

Let `x` be the solution set of equation `A^x=Idot,w h e r eA+[0 1-1 4-3 4 3-3 4]a n dI` is the corresponding unit matrix and `xsubeN ,` then the minimum value of `sum(cos^xtheta+sin^xtheta),theta in Rdot`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum value of the expression \( \sum ( \cos^x \theta + \sin^x \theta ) \) given that \( A^x = I \) for a matrix \( A \) and \( x \in \mathbb{N} \). ### Step-by-Step Solution: 1. **Identify the Matrix \( A \)**: We have the matrix: \[ A = \begin{pmatrix} 0 & 1 \\ -1 & 4 \\ -3 & 4 \\ 3 & -3 \\ 4 \end{pmatrix} \] 2. **Calculate \( A^2 \)**: We need to find \( A^2 \) to check if it equals the identity matrix \( I \). \[ A^2 = A \times A \] Performing the multiplication: \[ A^2 = \begin{pmatrix} 0 & 1 \\ -1 & 4 \\ -3 & 4 \\ 3 & -3 \\ 4 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ -1 & 4 \\ -3 & 4 \\ 3 & -3 \\ 4 \end{pmatrix} \] After performing the matrix multiplication, we find: \[ A^2 = I \] where \( I \) is the identity matrix. 3. **Determine Values of \( x \)**: Since \( A^2 = I \), we can conclude that: \[ A^x = I \text{ for even } x \text{ (i.e., } x = 2, 4, 6, \ldots \text{)} \] Thus, \( x \) can take values from the set of natural numbers \( \mathbb{N} \) that are even. 4. **Evaluate the Expression**: We need to evaluate: \[ \sum ( \cos^x \theta + \sin^x \theta ) \] for even values of \( x \): \[ \sum_{k=1}^{n} ( \cos^{2k} \theta + \sin^{2k} \theta ) \] This can be separated into two geometric series. 5. **Sum of Geometric Series**: The sum of the series for \( \cos^{2k} \theta \) and \( \sin^{2k} \theta \): \[ S_{\cos} = \sum_{k=1}^{n} \cos^{2k} \theta = \frac{\cos^2 \theta}{1 - \cos^2 \theta} \] \[ S_{\sin} = \sum_{k=1}^{n} \sin^{2k} \theta = \frac{\sin^2 \theta}{1 - \sin^2 \theta} \] 6. **Combine the Sums**: Combining these results: \[ S = S_{\cos} + S_{\sin} = \frac{\cos^2 \theta}{\sin^2 \theta} + \frac{\sin^2 \theta}{\cos^2 \theta} \] Let \( u = \tan^2 \theta \): \[ S = u + \frac{1}{u} \] 7. **Find the Minimum Value**: To find the minimum value of \( u + \frac{1}{u} \), we apply the AM-GM inequality: \[ u + \frac{1}{u} \geq 2 \] The minimum value occurs when \( u = 1 \) (i.e., \( \tan^2 \theta = 1 \), or \( \theta = \frac{\pi}{4} \)). ### Final Answer: The minimum value of \( \sum ( \cos^x \theta + \sin^x \theta ) \) is: \[ \boxed{2} \]

To solve the problem, we need to find the minimum value of the expression \( \sum ( \cos^x \theta + \sin^x \theta ) \) given that \( A^x = I \) for a matrix \( A \) and \( x \in \mathbb{N} \). ### Step-by-Step Solution: 1. **Identify the Matrix \( A \)**: We have the matrix: \[ A = \begin{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Archives (Single correct Answer type)|11 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Matrix Type|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

The minimum value of {(r+5 -4|cos theta|)^(2) +(r-3|sin theta|)^(2)} AA r, theta in R is

The value for 2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta) +1 is

Find the equation of the curve whose parametric equation are x=1+4costheta,y=2+3sintheta,theta in Rdot

2(sin^(6) theta + cos^(6)theta) - 3(sin^(4)theta + cos^(4)theta)+ 1 = 0

The solution set of the equation (x+1)log_(3)^(2)x+4xlog_(3)-16=0is

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

The complete solution set of the inequality cos^(-1)(cos 4) gt 3x^(2) - 4x is

Let A be an involutary matrix and S be the set containing solution of A^(x)=1 where A = [[0,1,-1],[4,-3,4],[3,-3,4]] Then minimum value of sum_(x in S )^(oo) (sin^(x)theta+cos^(x)theta)

If theta in R - {(4n + 1) pi/4 , n in I} , then range of (cos 3 theta + sin 3 theta)/(cos theta - sin theta) is :

Prove that : sin theta cos^3 theta - cos theta sin^3 theta = 1/4 sin4theta .

CENGAGE ENGLISH-MATRICES-Numerical Value Type
  1. A=[[0 ,1],[ 3 ,0]]a n d(A^8+A^6+A^4+A^2+I) V=[[0] ,[11]](w h e r eIi s...

    Text Solution

    |

  2. If [a b c1-a] is an idempotent matrix and f(x)=x-^2=b c=1//4 , then th...

    Text Solution

    |

  3. Let x be the solution set of equation A^x=Idot,w h e r eA+[0 1-1 4-3 4...

    Text Solution

    |

  4. A=[1t a n x-t a n x1]a n df(x) is defined as f(x)=d e tdot(A^T A^(-1))...

    Text Solution

    |

  5. The equation [[1, 2 ,2 ],[1 ,3, 4],[ 2, 4,k]][[x ,y, z]] =[[0,0, 0]] h...

    Text Solution

    |

  6. If A is an idempotent matrix satisfying, (I-0. 4 A)^(-1)=I-alphaA ,w h...

    Text Solution

    |

  7. Let A=[(3x^2),(1),(6x)],B=[(a,b,c)],and C=[((x+2)^2,5x^2,2x),(5x^2,2x,...

    Text Solution

    |

  8. Let A be the set of all 3xx3 skew-symmetri matrices whose entries are ...

    Text Solution

    |

  9. Let A=[a("ij")](3xx3) be a matrix such that A A^(T)=4I and a("ij")+2c(...

    Text Solution

    |

  10. Let S be the set which contains all possible vaues fo I ,m ,n ,p ,q ,r...

    Text Solution

    |

  11. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  12. If A is a square matrix of order 3 such that |A|=2,t h e n|(a d jA^(-1...

    Text Solution

    |

  13. If A and B are two matrices of order 3 such that AB=O and A^(2)+B=I, t...

    Text Solution

    |

  14. If a, b, and c are integers, then number of matrices A=[(a,b,c),(b,c,a...

    Text Solution

    |

  15. Let A=[a("ij")] be 3xx3 matrix and B=[b("ij")] be 3xx3 matrix such tha...

    Text Solution

    |

  16. A square matrix M of order 3 satisfies M^(2)=I-M, where I is an identi...

    Text Solution

    |

  17. Let A=[a("ij")](3xx3), B=[b("ij")](3xx3) and C=[c("ij")](3xx3) be any ...

    Text Solution

    |

  18. If A is a square matrix of order 2xx2 such that |A|=27, then sum of th...

    Text Solution

    |

  19. If A is a aquare matrix of order 2 and det. A=10, then ((tr. A)^(2)-tr...

    Text Solution

    |

  20. Let A and B are two square matrices of order 3 such that det. (A)=3 an...

    Text Solution

    |