Home
Class 12
MATHS
Let A=[(3x^2),(1),(6x)],B=[(a,b,c)],and ...

Let `A=[(3x^2),(1),(6x)],B=[(a,b,c)],and C=[((x+2)^2,5x^2,2x),(5x^2,2x,(x+2)^2),(2x,(x+2)^2,5x^2)]` be three given matrices, where `a ,b ,c`` ,"and" ``x in R dot` Given that `f(x)=a x^2+b x+c ,` then the value of `f(I)` is ______.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the procedure outlined in the video transcript and derive the necessary values systematically. ### Step-by-Step Solution: 1. **Identify the Matrices**: - Let \( A = \begin{pmatrix} 3x^2 & 1 & 6x \end{pmatrix} \) - Let \( B = \begin{pmatrix} a & b & c \end{pmatrix} \) - Let \( C = \begin{pmatrix} (x+2)^2 & 5x^2 & 2x \\ 5x^2 & 2x & (x+2)^2 \\ 2x & (x+2)^2 & 5x^2 \end{pmatrix} \) 2. **Matrix Multiplication**: - We need to compute the product \( AB \): \[ AB = A \cdot B = \begin{pmatrix} 3x^2 & 1 & 6x \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 3ax^2 + b + 6cx \] 3. **Trace of Matrix C**: - The trace of matrix \( C \) is the sum of its diagonal elements: \[ \text{Trace}(C) = (x+2)^2 + 2x + 5x^2 \] 4. **Equate the Traces**: - From the problem statement, we have: \[ \text{Trace}(AB) = \text{Trace}(C) \] Thus, \[ 3ax^2 + 6cx + b = (x+2)^2 + 2x + 5x^2 \] 5. **Expand the Right Side**: - Expanding \( (x+2)^2 \): \[ (x+2)^2 = x^2 + 4x + 4 \] - Therefore, \[ \text{Trace}(C) = x^2 + 4x + 4 + 2x + 5x^2 = 6x^2 + 6x + 4 \] 6. **Compare Coefficients**: - Now we equate coefficients from both sides: - For \( x^2 \): \( 3a = 6 \) → \( a = 2 \) - For \( x \): \( 6c = 6 \) → \( c = 1 \) - For the constant term: \( b = 4 \) 7. **Form the Function \( f(x) \)**: - The function is given by: \[ f(x) = ax^2 + bx + c = 2x^2 + 4x + 1 \] 8. **Calculate \( f(1) \)**: - Substitute \( x = 1 \): \[ f(1) = 2(1)^2 + 4(1) + 1 = 2 + 4 + 1 = 7 \] ### Final Answer: The value of \( f(1) \) is \( 7 \). ---

To solve the problem step by step, we will follow the procedure outlined in the video transcript and derive the necessary values systematically. ### Step-by-Step Solution: 1. **Identify the Matrices**: - Let \( A = \begin{pmatrix} 3x^2 & 1 & 6x \end{pmatrix} \) - Let \( B = \begin{pmatrix} a & b & c \end{pmatrix} \) - Let \( C = \begin{pmatrix} (x+2)^2 & 5x^2 & 2x \\ 5x^2 & 2x & (x+2)^2 \\ 2x & (x+2)^2 & 5x^2 \end{pmatrix} \) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Archives (Single correct Answer type)|11 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Matrix Type|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let A=[[3x^2], [1], [6x]],B=[a,b,c] and C=[[(x+2)^2, 5x^2, 2x],[5x^2, 2x,(x+2)^2],[ 2x,(x+2)^2, 5x^2]] be three given matrices, where a ,b ,ca n dx in Rdot Given that tr(AB)=tr(C). If f(x)=a x^2+b x+c , then the value of f(1) is ______.

If |(2+x,x,x^(2)),(x,2+x,x^(2)),(x^(2),x,2+x)|=(1)/(6)(x-a)(x-b)(x-c)(x-d) an identity in x where a, b, c, d are independent of x, then the value of (13)/(25)abcd is

If a,b,c are in A.P.and f(x)= |(x+a,x^2+1,1),(x+b, 2x^2-1,1),(x+c,3x^2-2 , 1)| , then f'(x) is :

Let f(x)=a^2+b x+c where a ,b , c in R and a!=0. It is known that f(5)=-3f(2) and that 3 is a root of f(x)=0. Then find the other of f(x)=0.

(-3x^(2) + 5x -2) -2(x^(2)-2x-1) If the expression above is rewritten in the form ax^(2) + bx +c , where a, b, and c are constants, what is the value of b ?

It is given that the Rolles' theorem holds for the function f(x)=x^3+b x^2+c x ,x in [1,2] at the point x=4/3dot Find the values of b and c

It is given that the Rolles theorem holds for the function f(x)=x^3+b x^2+c x ,\ \ x in [1,2] at the point x=4/3 . Find the values of b and c .

If x-a is a factor of x^3-3x^2a+2a^2x+b , then the value of b is (a) 0 (b) 2 (c) 1 (d) 3

If (x^(2)+x+2)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) , then find the value of A+B+C .

Let f(x)=x^2+b x+c ,w h e r eb ,c in Rdot If f(x) is a factor of both x^4+6x^2+25 and 3x^4+4x^2+28 x+5 , then the least value of f(x) is: (a.) 2 (b.) 3 (c.) 5//2 (d.) 4

CENGAGE ENGLISH-MATRICES-Numerical Value Type
  1. The equation [[1, 2 ,2 ],[1 ,3, 4],[ 2, 4,k]][[x ,y, z]] =[[0,0, 0]] h...

    Text Solution

    |

  2. If A is an idempotent matrix satisfying, (I-0. 4 A)^(-1)=I-alphaA ,w h...

    Text Solution

    |

  3. Let A=[(3x^2),(1),(6x)],B=[(a,b,c)],and C=[((x+2)^2,5x^2,2x),(5x^2,2x,...

    Text Solution

    |

  4. Let A be the set of all 3xx3 skew-symmetri matrices whose entries are ...

    Text Solution

    |

  5. Let A=[a("ij")](3xx3) be a matrix such that A A^(T)=4I and a("ij")+2c(...

    Text Solution

    |

  6. Let S be the set which contains all possible vaues fo I ,m ,n ,p ,q ,r...

    Text Solution

    |

  7. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  8. If A is a square matrix of order 3 such that |A|=2,t h e n|(a d jA^(-1...

    Text Solution

    |

  9. If A and B are two matrices of order 3 such that AB=O and A^(2)+B=I, t...

    Text Solution

    |

  10. If a, b, and c are integers, then number of matrices A=[(a,b,c),(b,c,a...

    Text Solution

    |

  11. Let A=[a("ij")] be 3xx3 matrix and B=[b("ij")] be 3xx3 matrix such tha...

    Text Solution

    |

  12. A square matrix M of order 3 satisfies M^(2)=I-M, where I is an identi...

    Text Solution

    |

  13. Let A=[a("ij")](3xx3), B=[b("ij")](3xx3) and C=[c("ij")](3xx3) be any ...

    Text Solution

    |

  14. If A is a square matrix of order 2xx2 such that |A|=27, then sum of th...

    Text Solution

    |

  15. If A is a aquare matrix of order 2 and det. A=10, then ((tr. A)^(2)-tr...

    Text Solution

    |

  16. Let A and B are two square matrices of order 3 such that det. (A)=3 an...

    Text Solution

    |

  17. Let P, Q and R be invertible matrices of order 3 such A=PQ^(-1), B=QR^...

    Text Solution

    |

  18. If A=[(1,x,3),(1,3,3),(2,4,4)] is the adjoint of a 3xx3 matrix B and d...

    Text Solution

    |

  19. A, B and C are three square matrices of order 3 such that A= diag (x, ...

    Text Solution

    |

  20. Let A=[a("ij")] be a matrix of order 2 where a("ij") in {-1, 0, 1} and...

    Text Solution

    |