Home
Class 12
MATHS
Let S be the set which contains all poss...

Let `S` be the set which contains all possible vaues fo `I ,m ,n ,p ,q ,r` for which `A=[I^2-3p0 0m^2-8q r0n^2-15]` be non-singular idempotent matrix. Then the sum of all the elements of the set `S` is ________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given matrix \( A \) and determine the conditions under which it is a non-singular idempotent matrix. Given: \[ A = \begin{bmatrix} I^2 - 3p & 0 & 0 \\ m^2 - 8q & r & 0 \\ n^2 - 15 & 0 & 0 \end{bmatrix} \] ### Step 1: Understand the properties of idempotent matrices An idempotent matrix \( A \) satisfies the condition \( A^2 = A \). ### Step 2: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{bmatrix} I^2 - 3p & 0 & 0 \\ m^2 - 8q & r & 0 \\ n^2 - 15 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} I^2 - 3p & 0 & 0 \\ m^2 - 8q & r & 0 \\ n^2 - 15 & 0 & 0 \end{bmatrix} \] Calculating the elements of \( A^2 \): - The (1,1) entry: \( (I^2 - 3p)(I^2 - 3p) = (I^2 - 3p)^2 \) - The (2,2) entry: \( (m^2 - 8q)(r) \) - The (3,3) entry: \( (n^2 - 15)(0) = 0 \) Thus, we can write: \[ A^2 = \begin{bmatrix} (I^2 - 3p)^2 & 0 & 0 \\ (m^2 - 8q)r & r^2 & 0 \\ (n^2 - 15)(0) & 0 & 0 \end{bmatrix} \] ### Step 3: Set the condition for idempotency Since \( A^2 = A \), we equate the corresponding entries: 1. \( (I^2 - 3p)^2 = I^2 - 3p \) 2. \( (m^2 - 8q)r = m^2 - 8q \) 3. \( r^2 = r \) 4. \( 0 = 0 \) (which is always true) ### Step 4: Analyze the equations 1. From \( (I^2 - 3p)^2 = I^2 - 3p \): - Let \( x = I^2 - 3p \). The equation becomes \( x^2 = x \), which gives \( x(x - 1) = 0 \). Thus, \( x = 0 \) or \( x = 1 \). - Therefore, \( I^2 - 3p = 0 \) or \( I^2 - 3p = 1 \). 2. From \( (m^2 - 8q)r = m^2 - 8q \): - Let \( y = m^2 - 8q \). The equation becomes \( yr = y \), which gives \( y(r - 1) = 0 \). Thus, \( y = 0 \) or \( r = 1 \). - Therefore, \( m^2 - 8q = 0 \) or \( r = 1 \). 3. From \( r^2 = r \): - This gives \( r(r - 1) = 0 \), so \( r = 0 \) or \( r = 1 \). ### Step 5: Solve for \( I, m, n, p, q, r \) 1. If \( I^2 - 3p = 0 \): - \( I^2 = 3p \) implies \( p = \frac{I^2}{3} \). 2. If \( I^2 - 3p = 1 \): - \( I^2 = 3p + 1 \). 3. For \( m^2 - 8q = 0 \): - \( q = \frac{m^2}{8} \). 4. For \( n^2 - 15 = 0 \): - \( n^2 = 15 \) gives \( n = \pm \sqrt{15} \). ### Step 6: Collect possible values - Possible values for \( I \) from \( I^2 = 3p \) or \( I^2 = 3p + 1 \) yield \( I = \pm 2 \). - Possible values for \( m \) yield \( m = \pm 3 \). - Possible values for \( n \) yield \( n = \pm 4 \). - \( p, q, r \) must be \( 0 \) based on the conditions derived. ### Step 7: Sum all elements of set \( S \) The possible values are: - \( I: 2, -2 \) - \( m: 3, -3 \) - \( n: 4, -4 \) - \( p = 0, q = 0, r = 0 \) Thus, the sum of all possible values: \[ 2 + (-2) + 3 + (-3) + 4 + (-4) + 0 + 0 + 0 = 0 \] ### Final Answer: The sum of all the elements of the set \( S \) is \( 0 \).

To solve the problem, we need to analyze the given matrix \( A \) and determine the conditions under which it is a non-singular idempotent matrix. Given: \[ A = \begin{bmatrix} I^2 - 3p & 0 & 0 \\ m^2 - 8q & r & 0 \\ n^2 - 15 & 0 & 0 ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Archives (Single correct Answer type)|11 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Matrix Type|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let S be the set which contains all possible values of l ,m ,n ,p ,q ,r for which A=[[l^2-3,p,0],[0,m^2-8,q],[r,0,n^2-15]] be non-singular idempotent matrix. Then the sum of all the elements of the set S is ________.

A=[[0 ,1],[ 3 ,0]]a n d(A^8+A^6+A^4+A^2+I) V=[[0] ,[11]](w h e r eIi s the 2xx2 identity matrix ), then the product of all elements of matrix V is _____.

Consider the equation p = 5-2q - 3 Greatest sat of all possible values of p for q in R is

Let f:R rarr R be a function defined by f(x)={abs(cosx)} , where {x} represents fractional part of x. Let S be the set containing all real values x lying in the interval [0,2pi] for which f(x) ne abs(cosx) . The number of elements in the set S is

Let p be a non singular matrix, and I + P + p^2 + ... + p^n = 0, then find p^-1 .

Let P be a matrix of order 3xx3 such that all the entries in P are from the set {-1,\ 0,\ 1} . Then, the maximum possible value of the determinant of P is ______.

The number of all subsets of a set containing 2n+1 elements which contains more than n elements is

Let a_m (m = 1, 2, ,p) be the possible integral values of a for which the graphs of f(x) =ax^2+2bx +b and g(x) =5x^2-3bx-a meets at some point for all real values of b Let t_r = prod_(m=1)^p(r-a_m ) and S_n =sum_(r=1)^n t_r. n in N The minimum possible value of a is

Let S be the sum, P the product, and R the sum of reciprocals of n terms in a G.P. Prove that P^2R^n=S^ndot

Let S be the set of all points in a plane and R be a relation on S defines as R={(P,Q): distance between P and Q is less than 2 units} Show that R is reflexive and symmetric but not transitive.

CENGAGE ENGLISH-MATRICES-Numerical Value Type
  1. Let A be the set of all 3xx3 skew-symmetri matrices whose entries are ...

    Text Solution

    |

  2. Let A=[a("ij")](3xx3) be a matrix such that A A^(T)=4I and a("ij")+2c(...

    Text Solution

    |

  3. Let S be the set which contains all possible vaues fo I ,m ,n ,p ,q ,r...

    Text Solution

    |

  4. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  5. If A is a square matrix of order 3 such that |A|=2,t h e n|(a d jA^(-1...

    Text Solution

    |

  6. If A and B are two matrices of order 3 such that AB=O and A^(2)+B=I, t...

    Text Solution

    |

  7. If a, b, and c are integers, then number of matrices A=[(a,b,c),(b,c,a...

    Text Solution

    |

  8. Let A=[a("ij")] be 3xx3 matrix and B=[b("ij")] be 3xx3 matrix such tha...

    Text Solution

    |

  9. A square matrix M of order 3 satisfies M^(2)=I-M, where I is an identi...

    Text Solution

    |

  10. Let A=[a("ij")](3xx3), B=[b("ij")](3xx3) and C=[c("ij")](3xx3) be any ...

    Text Solution

    |

  11. If A is a square matrix of order 2xx2 such that |A|=27, then sum of th...

    Text Solution

    |

  12. If A is a aquare matrix of order 2 and det. A=10, then ((tr. A)^(2)-tr...

    Text Solution

    |

  13. Let A and B are two square matrices of order 3 such that det. (A)=3 an...

    Text Solution

    |

  14. Let P, Q and R be invertible matrices of order 3 such A=PQ^(-1), B=QR^...

    Text Solution

    |

  15. If A=[(1,x,3),(1,3,3),(2,4,4)] is the adjoint of a 3xx3 matrix B and d...

    Text Solution

    |

  16. A, B and C are three square matrices of order 3 such that A= diag (x, ...

    Text Solution

    |

  17. Let A=[a("ij")] be a matrix of order 2 where a("ij") in {-1, 0, 1} and...

    Text Solution

    |

  18. Let K be a positive real number and A=[2k-1 2sqrt(k)2sqrt(k)2sqrt(k)1-...

    Text Solution

    |

  19. Let M be a 3xx3 matrix satisfying M[0 1 0]=[-1 2 3] ,M[1-1 0]=[1 1-1],...

    Text Solution

    |

  20. let z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let ...

    Text Solution

    |