Home
Class 12
MATHS
Let A=[a("ij")] be 3xx3 matrix and B=[b(...

Let `A=[a_("ij")]` be `3xx3` matrix and `B=[b_("ij")]` be `3xx3` matrix such that `b_("ij")` is the sum of the elements of `i^(th)` row of A except `a_("ij")`. If det, `(A)=19`, then the value of det. (B) is ________ .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant of matrix B, which is defined based on the elements of matrix A. Let's go through the steps systematically. ### Step 1: Define the Matrices Let \( A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \) and we know that \( \text{det}(A) = 19 \). ### Step 2: Define the Elements of Matrix B Matrix B is defined such that each element \( b_{ij} \) is the sum of the elements of the \( i^{th} \) row of A, excluding \( a_{ij} \). Thus, we can express the elements of B as follows: - \( b_{11} = a_{12} + a_{13} \) - \( b_{12} = a_{11} + a_{13} \) - \( b_{13} = a_{11} + a_{12} \) - \( b_{21} = a_{22} + a_{23} \) - \( b_{22} = a_{21} + a_{23} \) - \( b_{23} = a_{21} + a_{22} \) - \( b_{31} = a_{32} + a_{33} \) - \( b_{32} = a_{31} + a_{33} \) - \( b_{33} = a_{31} + a_{32} \) ### Step 3: Write Matrix B Thus, we can write matrix B as: \[ B = \begin{bmatrix} a_{12} + a_{13} & a_{11} + a_{13} & a_{11} + a_{12} \\ a_{22} + a_{23} & a_{21} + a_{23} & a_{21} + a_{22} \\ a_{32} + a_{33} & a_{31} + a_{33} & a_{31} + a_{32} \end{bmatrix} \] ### Step 4: Express B in Terms of A We can express B as a product of two matrices. Let \( C \) be the matrix formed by the elements of A: \[ C = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \] We can express B as: \[ B = C \cdot D \] where \( D \) is a transformation matrix that modifies the structure of A to obtain B. ### Step 5: Define the Transformation Matrix D The transformation matrix \( D \) can be defined as: \[ D = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \] ### Step 6: Calculate the Determinant of D Now, we need to calculate \( \text{det}(D) \): \[ \text{det}(D) = 0(0 \cdot 0 - 1 \cdot 1) - 1(1 \cdot 0 - 1 \cdot 1) + 1(1 \cdot 1 - 0 \cdot 1) \] \[ = 0 - 1(-1) + 1(1) = 1 + 1 = 2 \] ### Step 7: Use the Determinant Property Using the property of determinants: \[ \text{det}(B) = \text{det}(C) \cdot \text{det}(D) \] \[ \text{det}(B) = \text{det}(A) \cdot \text{det}(D) = 19 \cdot 2 = 38 \] ### Final Answer Thus, the value of \( \text{det}(B) \) is \( 38 \).

To solve the problem, we need to find the determinant of matrix B, which is defined based on the elements of matrix A. Let's go through the steps systematically. ### Step 1: Define the Matrices Let \( A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \) and we know that \( \text{det}(A) = 19 \). ### Step 2: Define the Elements of Matrix B Matrix B is defined such that each element \( b_{ij} \) is the sum of the elements of the \( i^{th} \) row of A, excluding \( a_{ij} \). ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Archives (Single correct Answer type)|11 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Matrix Type|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let A=[a_(ij)]_(mxxn) be a matrix such that a_(ij)=1 for all I,j. Then ,

A matrix A=[a_(ij)]_(mxxn) is

Consider an arbitarary 3xx3 non-singular matrix A[a_("ij")] . A maxtrix B=[b_("ij")] is formed such that b_("ij") is the sum of all the elements except a_("ij") in the ith row of A. Answer the following questions : If there exists a matrix X with constant elemts such that AX=B , then X is

Let A=[a_(ij)] be a square matrix of order 3 and B=[b_(ij)] be a matrix such that b_(ij)=2^(i-j)a_(ij) for 1lei,jle3, AA i,j in N . If the determinant of A is same as its order, then the value of |(B^(T))^(-1)| is

Let A be a 2xx3 matrix, whereas B be a 3xx2 amtrix. If det.(AB)=4 , then the value of det.(BA) is

Let A=[a_(ij)]_(nxxn) be a square matrix and let c_(ij) be cofactor of a_(ij) in A. If C=[c_(ij)] , then

Let A=[a_("ij")] be a matrix of order 2 where a_("ij") in {-1, 0, 1} and adj. A=-A . If det. (A)=-1 , then the number of such matrices is ______ .

If A_(ij) is the cofactor of the element a_(ij) of the determinant |(2,-3,5),(6,0,4),(1,5,-7)| , then write the value of a_(32)., A_(32) .

If A=[a_(ij)] is a square matrix of order 3 and A_(ij) denote cofactor of the element a_(ij) in |A| then the value of |A| is given by

Let A=[a_("ij")]_(3xx3), B=[b_("ij")]_(3xx3) and C=[c_("ij")]_(3xx3) be any three matrices, where b_("ij")=3^(i-j) a_("ij") and c_("ij")=4^(i-j) b_("ij") . If det. A=2 , then det. (BC) is equal to _______ .

CENGAGE ENGLISH-MATRICES-Numerical Value Type
  1. Let A be the set of all 3xx3 skew-symmetri matrices whose entries are ...

    Text Solution

    |

  2. Let A=[a("ij")](3xx3) be a matrix such that A A^(T)=4I and a("ij")+2c(...

    Text Solution

    |

  3. Let S be the set which contains all possible vaues fo I ,m ,n ,p ,q ,r...

    Text Solution

    |

  4. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  5. If A is a square matrix of order 3 such that |A|=2,t h e n|(a d jA^(-1...

    Text Solution

    |

  6. If A and B are two matrices of order 3 such that AB=O and A^(2)+B=I, t...

    Text Solution

    |

  7. If a, b, and c are integers, then number of matrices A=[(a,b,c),(b,c,a...

    Text Solution

    |

  8. Let A=[a("ij")] be 3xx3 matrix and B=[b("ij")] be 3xx3 matrix such tha...

    Text Solution

    |

  9. A square matrix M of order 3 satisfies M^(2)=I-M, where I is an identi...

    Text Solution

    |

  10. Let A=[a("ij")](3xx3), B=[b("ij")](3xx3) and C=[c("ij")](3xx3) be any ...

    Text Solution

    |

  11. If A is a square matrix of order 2xx2 such that |A|=27, then sum of th...

    Text Solution

    |

  12. If A is a aquare matrix of order 2 and det. A=10, then ((tr. A)^(2)-tr...

    Text Solution

    |

  13. Let A and B are two square matrices of order 3 such that det. (A)=3 an...

    Text Solution

    |

  14. Let P, Q and R be invertible matrices of order 3 such A=PQ^(-1), B=QR^...

    Text Solution

    |

  15. If A=[(1,x,3),(1,3,3),(2,4,4)] is the adjoint of a 3xx3 matrix B and d...

    Text Solution

    |

  16. A, B and C are three square matrices of order 3 such that A= diag (x, ...

    Text Solution

    |

  17. Let A=[a("ij")] be a matrix of order 2 where a("ij") in {-1, 0, 1} and...

    Text Solution

    |

  18. Let K be a positive real number and A=[2k-1 2sqrt(k)2sqrt(k)2sqrt(k)1-...

    Text Solution

    |

  19. Let M be a 3xx3 matrix satisfying M[0 1 0]=[-1 2 3] ,M[1-1 0]=[1 1-1],...

    Text Solution

    |

  20. let z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let ...

    Text Solution

    |