Home
Class 12
MATHS
Let A=[a("ij")](3xx3), B=[b("ij")](3xx3)...

Let `A=[a_("ij")]_(3xx3), B=[b_("ij")]_(3xx3)` and `C=[c_("ij")]_(3xx3)` be any three matrices, where `b_("ij")=3^(i-j) a_("ij")` and `c_("ij")=4^(i-j) b_("ij")`. If det. `A=2`, then det. `(BC)` is equal to _______ .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant of the product of matrices \( B \) and \( C \), given the relationships between the matrices and the determinant of matrix \( A \). ### Step-by-Step Solution: 1. **Understanding the matrices**: - We have three matrices \( A \), \( B \), and \( C \) defined as follows: - \( B_{ij} = 3^{i-j} A_{ij} \) - \( C_{ij} = 4^{i-j} B_{ij} \) 2. **Finding the determinant of matrix \( B \)**: - The determinant of \( B \) can be expressed in terms of the determinant of \( A \): \[ \text{det}(B) = \text{det}(3^{i-j} A_{ij}) = 3^{\text{sum of indices}} \cdot \text{det}(A) \] - For a \( 3 \times 3 \) matrix, the sum of the indices \( i-j \) for all elements will yield a factor of \( 3^0 \) for \( B_{11} \), \( 3^1 \) for \( B_{21} \), and so on. Thus, we can factor out \( 3^3 \) from the determinant: \[ \text{det}(B) = 3^3 \cdot \text{det}(A) = 27 \cdot 2 = 54 \] 3. **Finding the determinant of matrix \( C \)**: - Similarly, we find the determinant of \( C \): \[ \text{det}(C) = \text{det}(4^{i-j} B_{ij}) = 4^{\text{sum of indices}} \cdot \text{det}(B) \] - Again, for a \( 3 \times 3 \) matrix, the sum of the indices \( i-j \) will yield a factor of \( 4^0 \) for \( C_{11} \), \( 4^1 \) for \( C_{21} \), and so on. Thus, we can factor out \( 4^3 \) from the determinant: \[ \text{det}(C) = 4^3 \cdot \text{det}(B) = 64 \cdot 54 = 3456 \] 4. **Finding the determinant of the product \( BC \)**: - Using the property of determinants: \[ \text{det}(BC) = \text{det}(B) \cdot \text{det}(C) \] - Substituting the values we found: \[ \text{det}(BC) = 54 \cdot 3456 = 186624 \] ### Final Answer: \[ \text{det}(BC) = 186624 \]

To solve the problem, we need to find the determinant of the product of matrices \( B \) and \( C \), given the relationships between the matrices and the determinant of matrix \( A \). ### Step-by-Step Solution: 1. **Understanding the matrices**: - We have three matrices \( A \), \( B \), and \( C \) defined as follows: - \( B_{ij} = 3^{i-j} A_{ij} \) - \( C_{ij} = 4^{i-j} B_{ij} \) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Archives (Single correct Answer type)|11 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Matrix Type|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Construct a 2xx2 matrix, where (i) a_("ij")=((i-2j)^(2))/(2) (ii) a_("ij")=|-2i+3j|

Let A=[a_("ij")] be 3xx3 matrix and B=[b_("ij")] be 3xx3 matrix such that b_("ij") is the sum of the elements of i^(th) row of A except a_("ij") . If det, (A)=19 , then the value of det. (B) is ________ .

Let A=[a_(ij)]_(3xx3) be a scalar matrix and a_(11)+a_(22)+a_(33)=15 then write matrix A.

If matrix A=[a_(ij)]_(3xx) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

Let A=[a_(ij)]_(nxxn) be a square matrix and let c_(ij) be cofactor of a_(ij) in A. If C=[c_(ij)] , then

Let A=[a_("ij")] be a matrix of order 2 where a_("ij") in {-1, 0, 1} and adj. A=-A . If det. (A)=-1 , then the number of such matrices is ______ .

Construct a_(2xx2) matrix, where (i) a_(ij)=((i-2j)^(2))/(2) (ii) a_(ij)=|-2hati+3j|

Let A=[a_(ij)]_(mxxn) be a matrix such that a_(ij)=1 for all I,j. Then ,

Let A = [a_(ij)], B=[b_(ij)] are two 3 × 3 matrices such that b_(ij) = lambda ^(i+j-2) a_(ij) & |B| = 81 . Find |A| if lambda = 3.

CENGAGE ENGLISH-MATRICES-Numerical Value Type
  1. Let A be the set of all 3xx3 skew-symmetri matrices whose entries are ...

    Text Solution

    |

  2. Let A=[a("ij")](3xx3) be a matrix such that A A^(T)=4I and a("ij")+2c(...

    Text Solution

    |

  3. Let S be the set which contains all possible vaues fo I ,m ,n ,p ,q ,r...

    Text Solution

    |

  4. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  5. If A is a square matrix of order 3 such that |A|=2,t h e n|(a d jA^(-1...

    Text Solution

    |

  6. If A and B are two matrices of order 3 such that AB=O and A^(2)+B=I, t...

    Text Solution

    |

  7. If a, b, and c are integers, then number of matrices A=[(a,b,c),(b,c,a...

    Text Solution

    |

  8. Let A=[a("ij")] be 3xx3 matrix and B=[b("ij")] be 3xx3 matrix such tha...

    Text Solution

    |

  9. A square matrix M of order 3 satisfies M^(2)=I-M, where I is an identi...

    Text Solution

    |

  10. Let A=[a("ij")](3xx3), B=[b("ij")](3xx3) and C=[c("ij")](3xx3) be any ...

    Text Solution

    |

  11. If A is a square matrix of order 2xx2 such that |A|=27, then sum of th...

    Text Solution

    |

  12. If A is a aquare matrix of order 2 and det. A=10, then ((tr. A)^(2)-tr...

    Text Solution

    |

  13. Let A and B are two square matrices of order 3 such that det. (A)=3 an...

    Text Solution

    |

  14. Let P, Q and R be invertible matrices of order 3 such A=PQ^(-1), B=QR^...

    Text Solution

    |

  15. If A=[(1,x,3),(1,3,3),(2,4,4)] is the adjoint of a 3xx3 matrix B and d...

    Text Solution

    |

  16. A, B and C are three square matrices of order 3 such that A= diag (x, ...

    Text Solution

    |

  17. Let A=[a("ij")] be a matrix of order 2 where a("ij") in {-1, 0, 1} and...

    Text Solution

    |

  18. Let K be a positive real number and A=[2k-1 2sqrt(k)2sqrt(k)2sqrt(k)1-...

    Text Solution

    |

  19. Let M be a 3xx3 matrix satisfying M[0 1 0]=[-1 2 3] ,M[1-1 0]=[1 1-1],...

    Text Solution

    |

  20. let z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let ...

    Text Solution

    |