Home
Class 12
MATHS
Let P, Q and R be invertible matrices of...

Let P, Q and R be invertible matrices of order 3 such `A=PQ^(-1), B=QR^(-1)` and `C=RP^(-1)`. Then the value of det. `(ABC+BCA+CAB)` is equal to _______.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \det(ABC + BCA + CAB) \) given the matrices \( A = PQ^{-1} \), \( B = QR^{-1} \), and \( C = RP^{-1} \). ### Step 1: Calculate \( ABC \) We start by calculating the product \( ABC \): \[ ABC = (PQ^{-1})(QR^{-1})(RP^{-1}) \] Notice that the \( Q^{-1} \) and \( Q \) will cancel out: \[ ABC = P(Q^{-1}Q)R^{-1}P^{-1} = PR^{-1}P^{-1} \] ### Step 2: Calculate \( BCA \) Next, we calculate \( BCA \): \[ BCA = (QR^{-1})(RP^{-1})(PQ^{-1}) \] Again, the \( R^{-1} \) and \( R \) will cancel out: \[ BCA = Q(R^{-1}R)P^{-1}Q^{-1} = QP^{-1}Q^{-1} \] ### Step 3: Calculate \( CAB \) Now, we calculate \( CAB \): \[ CAB = (RP^{-1})(PQ^{-1})(QR^{-1}) \] Here, the \( P^{-1} \) and \( P \) will cancel out: \[ CAB = R(P^{-1}P)Q^{-1}R^{-1} = RQ^{-1}R^{-1} \] ### Step 4: Combine Results Now we have: \[ ABC = PR^{-1}P^{-1}, \quad BCA = QP^{-1}Q^{-1}, \quad CAB = RQ^{-1}R^{-1} \] ### Step 5: Calculate \( ABC + BCA + CAB \) Next, we need to compute \( ABC + BCA + CAB \): \[ ABC + BCA + CAB = PR^{-1}P^{-1} + QP^{-1}Q^{-1} + RQ^{-1}R^{-1} \] ### Step 6: Factor out the identity matrix Since \( P, Q, R \) are invertible matrices, we can express the sum in terms of the identity matrix: \[ ABC + BCA + CAB = I + I + I = 3I \] ### Step 7: Calculate the determinant Now we can find the determinant: \[ \det(ABC + BCA + CAB) = \det(3I) \] Using the property of determinants, we know: \[ \det(cI) = c^n \cdot \det(I) \] where \( n \) is the order of the matrix. Here, \( n = 3 \) and \( c = 3 \): \[ \det(3I) = 3^3 \cdot \det(I) = 27 \cdot 1 = 27 \] ### Final Answer Thus, the value of \( \det(ABC + BCA + CAB) \) is \( \boxed{27} \). ---

To solve the problem, we need to find the value of \( \det(ABC + BCA + CAB) \) given the matrices \( A = PQ^{-1} \), \( B = QR^{-1} \), and \( C = RP^{-1} \). ### Step 1: Calculate \( ABC \) We start by calculating the product \( ABC \): \[ ABC = (PQ^{-1})(QR^{-1})(RP^{-1}) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Archives (Single correct Answer type)|11 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Matrix Type|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A and B are invertible matrices of order 3 |A|=2 and |(AB)^(-1)|=-(1)/(6) find |B|.

Let A and B be two invertible matrices of order 3xx3 . If det. (ABA^(T)) = 8 and det. (AB^(-1)) = 8, then det. (BA^(-1)B^(T)) is equal to

If A and B are square matrices of order 3 such that "AA"^(T)=3B and 2AB^(-1)=3A^(-1)B , then the value of (|B|^(2))/(16) is equal to

Let A and B are two square matrices of order 3 such that det. (A)=3 and det. (B)=2 , then the value of det. (("adj. "(B^(-1) A^(-1)))^(-1)) is equal to _______ .

If A=[{:(2,3),(-1,-2):}] and B=sum_(r=1)^(10)A^r , then the value of det (B)is equal to

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

If A; B are invertible matrices of the same order; then show that (AB)^-1 = B^-1 A^-1

If A and B are square matrices of order 3 such that |A| = 3 and |B| = 2 , then the value of |A^(-1) adj(B^(-1)) adj (3A^(-1))| is equal to

If A, B, C are invertible matrices, then (ABC)^(-1) =

Let A be a square matrix of order 3 such that det. (A)=1/3 , then the value of det. ("adj. "A^(-1)) is

CENGAGE ENGLISH-MATRICES-Numerical Value Type
  1. Let A be the set of all 3xx3 skew-symmetri matrices whose entries are ...

    Text Solution

    |

  2. Let A=[a("ij")](3xx3) be a matrix such that A A^(T)=4I and a("ij")+2c(...

    Text Solution

    |

  3. Let S be the set which contains all possible vaues fo I ,m ,n ,p ,q ,r...

    Text Solution

    |

  4. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  5. If A is a square matrix of order 3 such that |A|=2,t h e n|(a d jA^(-1...

    Text Solution

    |

  6. If A and B are two matrices of order 3 such that AB=O and A^(2)+B=I, t...

    Text Solution

    |

  7. If a, b, and c are integers, then number of matrices A=[(a,b,c),(b,c,a...

    Text Solution

    |

  8. Let A=[a("ij")] be 3xx3 matrix and B=[b("ij")] be 3xx3 matrix such tha...

    Text Solution

    |

  9. A square matrix M of order 3 satisfies M^(2)=I-M, where I is an identi...

    Text Solution

    |

  10. Let A=[a("ij")](3xx3), B=[b("ij")](3xx3) and C=[c("ij")](3xx3) be any ...

    Text Solution

    |

  11. If A is a square matrix of order 2xx2 such that |A|=27, then sum of th...

    Text Solution

    |

  12. If A is a aquare matrix of order 2 and det. A=10, then ((tr. A)^(2)-tr...

    Text Solution

    |

  13. Let A and B are two square matrices of order 3 such that det. (A)=3 an...

    Text Solution

    |

  14. Let P, Q and R be invertible matrices of order 3 such A=PQ^(-1), B=QR^...

    Text Solution

    |

  15. If A=[(1,x,3),(1,3,3),(2,4,4)] is the adjoint of a 3xx3 matrix B and d...

    Text Solution

    |

  16. A, B and C are three square matrices of order 3 such that A= diag (x, ...

    Text Solution

    |

  17. Let A=[a("ij")] be a matrix of order 2 where a("ij") in {-1, 0, 1} and...

    Text Solution

    |

  18. Let K be a positive real number and A=[2k-1 2sqrt(k)2sqrt(k)2sqrt(k)1-...

    Text Solution

    |

  19. Let M be a 3xx3 matrix satisfying M[0 1 0]=[-1 2 3] ,M[1-1 0]=[1 1-1],...

    Text Solution

    |

  20. let z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let ...

    Text Solution

    |