Home
Class 12
MATHS
Let A=[a("ij")] be a matrix of order 2 w...

Let `A=[a_("ij")]` be a matrix of order 2 where `a_("ij") in {-1, 0, 1}` and adj. `A=-A`. If det. `(A)=-1`, then the number of such matrices is ______ .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of 2x2 matrices \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) where \( a, b, c, d \in \{-1, 0, 1\} \), given the conditions that \( \text{adj}(A) = -A \) and \( \det(A) = -1 \). ### Step-by-step Solution: 1. **Understanding the adjugate and determinant relationship**: The adjugate of a 2x2 matrix \( A \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] The condition \( \text{adj}(A) = -A \) implies: \[ \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix} \] This leads to the equations: - \( d = -a \) - \( -b = -b \) (which is always true) - \( -c = a \) - \( a = -d \) From \( d = -a \) and \( a = -d \), we can conclude that \( d = -a \). 2. **Finding the determinant**: The determinant of matrix \( A \) is given by: \[ \det(A) = ad - bc \] Substituting \( d = -a \): \[ \det(A) = a(-a) - bc = -a^2 - bc \] We know \( \det(A) = -1 \), so: \[ -a^2 - bc = -1 \implies a^2 + bc = 1 \] 3. **Analyzing possible values for \( a \)**: Since \( a \) can take values from \{-1, 0, 1\}, we analyze each case: - **Case 1**: \( a = 1 \) \[ 1^2 + bc = 1 \implies 1 + bc = 1 \implies bc = 0 \] Possible pairs for \( (b, c) \) are \( (0, 0), (1, 0), (0, -1), (-1, 0) \). Thus, \( d = -1 \). - Matrices: - \( \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \) - \( \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \) - \( \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix} \) - \( \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix} \) - \( \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \) - **Case 2**: \( a = 0 \) \[ 0^2 + bc = 1 \implies bc = 1 \] Possible pairs for \( (b, c) \) are \( (1, 1), (-1, -1) \). Thus, \( d = 0 \). - Matrices: - \( \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) - \( \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \) - **Case 3**: \( a = -1 \) \[ (-1)^2 + bc = 1 \implies 1 + bc = 1 \implies bc = 0 \] Possible pairs for \( (b, c) \) are \( (0, 0), (1, 0), (0, -1), (-1, 0) \). Thus, \( d = 1 \). - Matrices: - \( \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \) - \( \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} \) - \( \begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix} \) - \( \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix} \) - \( \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix} \) 4. **Counting the matrices**: - From Case 1: 5 matrices - From Case 2: 2 matrices - From Case 3: 5 matrices Total number of matrices = \( 5 + 2 + 5 = 12 \). ### Final Answer: The number of such matrices is **12**.

To solve the problem, we need to find the number of 2x2 matrices \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) where \( a, b, c, d \in \{-1, 0, 1\} \), given the conditions that \( \text{adj}(A) = -A \) and \( \det(A) = -1 \). ### Step-by-step Solution: 1. **Understanding the adjugate and determinant relationship**: The adjugate of a 2x2 matrix \( A \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Archives (Single correct Answer type)|11 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Matrix Type|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A = [a_(ij)] is a skew-symmetric matrix of order n, then a_(ij)=

Let A=[a_(ij)]_(mxxn) be a matrix such that a_(ij)=1 for all I,j. Then ,

If A=[a_(ij)] is a scalar matrix, then trace of A is

Let A=[a_(ij)] be a square matrix of order n such that {:a_(ij)={(0," if i ne j),(i,if i=j):} Statement -2 : The inverse of A is the matrix B=[b_(ij)] such that {:b_(ij)={(0," if i ne j),(1/i,if i=j):} Statement -2 : The inverse of a diagonal matrix is a scalar matrix.

A=[a_(ij)]_(mxxn) is a square matrix, if

Let matrix A=[[x,y,-z],[1,2,3],[1,1,2]] where x,y,zepsilonN . If det.(adj(adj.A))=2^8.(3^4) then the number of such matrices A is :

Let A=[a_("ij")] be 3xx3 matrix and B=[b_("ij")] be 3xx3 matrix such that b_("ij") is the sum of the elements of i^(th) row of A except a_("ij") . If det, (A)=19 , then the value of det. (B) is ________ .

If A=[a_(ij)] is a scalar matrix of order nxxn and k is a scalar, then abs(kA)=

If A=[a_(ij)] is a square matrix of order 3 and A_(ij) denote cofactor of the element a_(ij) in |A| then the value of |A| is given by

Let A=[a_("ij")]_(3xx3), B=[b_("ij")]_(3xx3) and C=[c_("ij")]_(3xx3) be any three matrices, where b_("ij")=3^(i-j) a_("ij") and c_("ij")=4^(i-j) b_("ij") . If det. A=2 , then det. (BC) is equal to _______ .

CENGAGE ENGLISH-MATRICES-Numerical Value Type
  1. Let A be the set of all 3xx3 skew-symmetri matrices whose entries are ...

    Text Solution

    |

  2. Let A=[a("ij")](3xx3) be a matrix such that A A^(T)=4I and a("ij")+2c(...

    Text Solution

    |

  3. Let S be the set which contains all possible vaues fo I ,m ,n ,p ,q ,r...

    Text Solution

    |

  4. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  5. If A is a square matrix of order 3 such that |A|=2,t h e n|(a d jA^(-1...

    Text Solution

    |

  6. If A and B are two matrices of order 3 such that AB=O and A^(2)+B=I, t...

    Text Solution

    |

  7. If a, b, and c are integers, then number of matrices A=[(a,b,c),(b,c,a...

    Text Solution

    |

  8. Let A=[a("ij")] be 3xx3 matrix and B=[b("ij")] be 3xx3 matrix such tha...

    Text Solution

    |

  9. A square matrix M of order 3 satisfies M^(2)=I-M, where I is an identi...

    Text Solution

    |

  10. Let A=[a("ij")](3xx3), B=[b("ij")](3xx3) and C=[c("ij")](3xx3) be any ...

    Text Solution

    |

  11. If A is a square matrix of order 2xx2 such that |A|=27, then sum of th...

    Text Solution

    |

  12. If A is a aquare matrix of order 2 and det. A=10, then ((tr. A)^(2)-tr...

    Text Solution

    |

  13. Let A and B are two square matrices of order 3 such that det. (A)=3 an...

    Text Solution

    |

  14. Let P, Q and R be invertible matrices of order 3 such A=PQ^(-1), B=QR^...

    Text Solution

    |

  15. If A=[(1,x,3),(1,3,3),(2,4,4)] is the adjoint of a 3xx3 matrix B and d...

    Text Solution

    |

  16. A, B and C are three square matrices of order 3 such that A= diag (x, ...

    Text Solution

    |

  17. Let A=[a("ij")] be a matrix of order 2 where a("ij") in {-1, 0, 1} and...

    Text Solution

    |

  18. Let K be a positive real number and A=[2k-1 2sqrt(k)2sqrt(k)2sqrt(k)1-...

    Text Solution

    |

  19. Let M be a 3xx3 matrix satisfying M[0 1 0]=[-1 2 3] ,M[1-1 0]=[1 1-1],...

    Text Solution

    |

  20. let z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let ...

    Text Solution

    |