Home
Class 12
MATHS
let z= (-1+sqrt(3i))/2, where i=sqrt(-1)...

let `z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let P= [((-z)^r, z^(2s)),(z^(2s), z^r)]` and I be the idenfity matrix or order 2. Then the total number of ordered pairs (r,s) or which `P^2=-I` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the total number of ordered pairs \((r, s)\) such that \(P^2 = -I\), where \(I\) is the identity matrix of order 2. The matrix \(P\) is defined as: \[ P = \begin{pmatrix} -z^r & z^{2s} \\ z^{2s} & z^r \end{pmatrix} \] Given that \(z = \frac{-1 + \sqrt{3}i}{2}\), we can express \(z\) in terms of \( \omega \), where \( \omega = z \). ### Step 1: Calculate \(P^2\) To find \(P^2\), we perform matrix multiplication: \[ P^2 = P \cdot P = \begin{pmatrix} -z^r & z^{2s} \\ z^{2s} & z^r \end{pmatrix} \cdot \begin{pmatrix} -z^r & z^{2s} \\ z^{2s} & z^r \end{pmatrix} \] Calculating the elements of \(P^2\): 1. First element: \[ (-z^r)(-z^r) + (z^{2s})(z^{2s}) = z^{2r} + z^{4s} \] 2. Second element: \[ (-z^r)(z^{2s}) + (z^{2s})(z^r) = -z^{r + 2s} + z^{r + 2s} = 0 \] 3. Third element: \[ (z^{2s})(-z^r) + (z^r)(z^{2s}) = -z^{2s + r} + z^{2s + r} = 0 \] 4. Fourth element: \[ (z^{2s})(z^{2s}) + (z^r)(z^r) = z^{4s} + z^{2r} \] Thus, we have: \[ P^2 = \begin{pmatrix} z^{2r} + z^{4s} & 0 \\ 0 & z^{2r} + z^{4s} \end{pmatrix} \] ### Step 2: Set \(P^2 = -I\) We know that the identity matrix \(I\) is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Thus, \(-I\) is: \[ -I = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \] Setting \(P^2 = -I\) gives us: \[ \begin{pmatrix} z^{2r} + z^{4s} & 0 \\ 0 & z^{2r} + z^{4s} \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \] This leads to the equation: \[ z^{2r} + z^{4s} = -1 \] ### Step 3: Analyze the equation We need to find values of \(r\) and \(s\) such that: \[ z^{2r} + z^{4s} = -1 \] ### Step 4: Substitute values for \(r\) and \(s\) Given that \(r, s \in \{1, 2, 3\}\), we will substitute these values and check: 1. For \(r = 1\), \(s = 1\): \[ z^{2(1)} + z^{4(1)} = z^2 + z^4 \] 2. For \(r = 1\), \(s = 2\): \[ z^{2(1)} + z^{4(2)} = z^2 + z^8 \] 3. For \(r = 1\), \(s = 3\): \[ z^{2(1)} + z^{4(3)} = z^2 + z^{12} \] 4. Repeat for \(r = 2\) and \(r = 3\). ### Step 5: Find valid pairs After substituting all combinations, we find that the only solution that satisfies the equation is: \((r, s) = (1, 1)\) ### Conclusion The total number of ordered pairs \((r, s)\) for which \(P^2 = -I\) is: \[ \text{Total pairs} = 1 \quad \text{(only } (1, 1) \text{)} \]

To solve the problem, we need to find the total number of ordered pairs \((r, s)\) such that \(P^2 = -I\), where \(I\) is the identity matrix of order 2. The matrix \(P\) is defined as: \[ P = \begin{pmatrix} -z^r & z^{2s} \\ z^{2s} & z^r \end{pmatrix} \] Given that \(z = \frac{-1 + \sqrt{3}i}{2}\), we can express \(z\) in terms of \( \omega \), where \( \omega = z \). ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Archives (Single correct Answer type)|11 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Matrix Type|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If z = (sqrt(3+i))/2 (where i = sqrt(-1) ) then (z^101 + i^103)^105 is equal to

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

Let z=9+ai, where i=sqrt(-1) and a be non-zero real. If Im(z^(2))=Im(z^(3)) , sum of the digits of a^(2) is

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)

If z = 3 -2i then the value s of (Rez) (Im z)^(2) is

let z_1,z_2,z_3 and z_4 be the roots of the equation z^4 + z^3 +2=0 , then the value of prod_(r=1)^(4) (2z_r+1) is equal to :

If x=3i, y=2i, z=m+I, and i=sqrt(-1) , then the expression xy^(2)z=

CENGAGE ENGLISH-MATRICES-Numerical Value Type
  1. Let A be the set of all 3xx3 skew-symmetri matrices whose entries are ...

    Text Solution

    |

  2. Let A=[a("ij")](3xx3) be a matrix such that A A^(T)=4I and a("ij")+2c(...

    Text Solution

    |

  3. Let S be the set which contains all possible vaues fo I ,m ,n ,p ,q ,r...

    Text Solution

    |

  4. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  5. If A is a square matrix of order 3 such that |A|=2,t h e n|(a d jA^(-1...

    Text Solution

    |

  6. If A and B are two matrices of order 3 such that AB=O and A^(2)+B=I, t...

    Text Solution

    |

  7. If a, b, and c are integers, then number of matrices A=[(a,b,c),(b,c,a...

    Text Solution

    |

  8. Let A=[a("ij")] be 3xx3 matrix and B=[b("ij")] be 3xx3 matrix such tha...

    Text Solution

    |

  9. A square matrix M of order 3 satisfies M^(2)=I-M, where I is an identi...

    Text Solution

    |

  10. Let A=[a("ij")](3xx3), B=[b("ij")](3xx3) and C=[c("ij")](3xx3) be any ...

    Text Solution

    |

  11. If A is a square matrix of order 2xx2 such that |A|=27, then sum of th...

    Text Solution

    |

  12. If A is a aquare matrix of order 2 and det. A=10, then ((tr. A)^(2)-tr...

    Text Solution

    |

  13. Let A and B are two square matrices of order 3 such that det. (A)=3 an...

    Text Solution

    |

  14. Let P, Q and R be invertible matrices of order 3 such A=PQ^(-1), B=QR^...

    Text Solution

    |

  15. If A=[(1,x,3),(1,3,3),(2,4,4)] is the adjoint of a 3xx3 matrix B and d...

    Text Solution

    |

  16. A, B and C are three square matrices of order 3 such that A= diag (x, ...

    Text Solution

    |

  17. Let A=[a("ij")] be a matrix of order 2 where a("ij") in {-1, 0, 1} and...

    Text Solution

    |

  18. Let K be a positive real number and A=[2k-1 2sqrt(k)2sqrt(k)2sqrt(k)1-...

    Text Solution

    |

  19. Let M be a 3xx3 matrix satisfying M[0 1 0]=[-1 2 3] ,M[1-1 0]=[1 1-1],...

    Text Solution

    |

  20. let z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let ...

    Text Solution

    |