Home
Class 12
MATHS
int(0)^(pi/3) tantheta/(sqrt(2ksectheta)...

`int_(0)^(pi/3) tantheta/(sqrt(2ksectheta))d theta=1-1/sqrt2,(kgt0)`, then the value of k is

A

2

B

`1/2`

C

4

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral equation given in the problem, we start with the expression: \[ \int_{0}^{\frac{\pi}{3}} \frac{\tan \theta}{\sqrt{2k \sec \theta}} d\theta = 1 - \frac{1}{\sqrt{2}} \] ### Step 1: Simplify the Integral We can rewrite the integral as: \[ \int_{0}^{\frac{\pi}{3}} \frac{\tan \theta}{\sqrt{2k} \sec \theta}} d\theta = \frac{1}{\sqrt{2k}} \int_{0}^{\frac{\pi}{3}} \tan \theta \cos \theta d\theta \] Since \(\sec \theta = \frac{1}{\cos \theta}\), we have: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] Thus, the integral becomes: \[ \int_{0}^{\frac{\pi}{3}} \frac{\sin \theta}{\sqrt{2k}} d\theta \] ### Step 2: Change of Variable To evaluate the integral, we can use the substitution \(u = \cos \theta\). Then, \(du = -\sin \theta d\theta\). The limits change as follows: - When \(\theta = 0\), \(u = \cos(0) = 1\) - When \(\theta = \frac{\pi}{3}\), \(u = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}\) Thus, the integral becomes: \[ -\frac{1}{\sqrt{2k}} \int_{1}^{\frac{1}{2}} du \] ### Step 3: Evaluate the Integral Now we can evaluate the integral: \[ -\frac{1}{\sqrt{2k}} \left[ u \right]_{1}^{\frac{1}{2}} = -\frac{1}{\sqrt{2k}} \left( \frac{1}{2} - 1 \right) = -\frac{1}{\sqrt{2k}} \left( -\frac{1}{2} \right) = \frac{1}{2\sqrt{2k}} \] ### Step 4: Set Up the Equation Now we equate this to the right-hand side of the original equation: \[ \frac{1}{2\sqrt{2k}} = 1 - \frac{1}{\sqrt{2}} \] ### Step 5: Solve for \(k\) To find \(k\), we first simplify the right-hand side: \[ 1 - \frac{1}{\sqrt{2}} = \frac{\sqrt{2} - 1}{\sqrt{2}} \] Now, equate the two expressions: \[ \frac{1}{2\sqrt{2k}} = \frac{\sqrt{2} - 1}{\sqrt{2}} \] Cross-multiplying gives: \[ \sqrt{2} = 2\sqrt{2k}(\sqrt{2} - 1) \] Squaring both sides: \[ 2 = 4(2k)(\sqrt{2} - 1)^2 \] Now, solving for \(k\): \[ k = \frac{2}{4(2)(\sqrt{2} - 1)^2} = \frac{1}{4(\sqrt{2} - 1)^2} \] ### Final Value of \(k\) Thus, the value of \(k\) is: \[ k = \frac{1}{4(\sqrt{2} - 1)^2} \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 9|6 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 7|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(3))(tanx)/(sqrt(2ksecx))dx=1-(1)/(sqrt2) , then value of k is (a) 2 (b) 1 (c) (1)/(2) (d) (1)/(4)

int_0^(pi/2) sqrt(sintheta)cos^5theta d theta

int_(0)^(pi//6) sqrt(1-sin 2x) dx

int_(0)^(pi/2)(dx)/(1+sqrt(cotx))

If int_0^a(dx)/(sqrt(x+a)+sqrt(x))=int_0^(pi/8)(2tantheta)/(sin2theta)d theta then value of ' a ' is a equal to (a >0) (a) 3/4 (b) pi/4 (c) (3pi)/4 (d) 9/(16)

If int_0^a(dx)/(sqrt(x+a)+sqrt(x))=int_0^(pi/8)(2tantheta)/(sin2theta)dtheta, then value of ' a ' is a equal to (a >0) 3/4 (b) pi/4 (c) (3pi)/4 (d) 9/(16)

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

If f(theta) = sin(tan^(-1)(sintheta/sqrt(cos2theta))) , where -pi/4 lt theta lt pi/4, then the value of d/(d(tantheta))\ f(theta) is

If sintheta=-1/2 and tantheta=1/sqrt(3) then theta is equal to,