Home
Class 12
MATHS
The value of int(-pi//2)^(pi//2)dx/([x]+...

The value of `int_(-pi//2)^(pi//2)dx/([x]+[sinx]+4)` where [t] denotes the greatest integer less or equal to t, is

A

`1/12(7pi+5)`

B

`3/10(4pi-3)`

C

`1/12(7pi-5)`

D

`3/20(4pi-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{[x] + [\sin x] + 4} \] where \([t]\) denotes the greatest integer less than or equal to \(t\), we will break the integral into segments where the greatest integer function remains constant. ### Step 1: Identify the points where the greatest integer function changes The limits of integration are from \(-\frac{\pi}{2}\) to \(\frac{\pi}{2}\). We need to identify the integer points in this range where the nature of the function changes. The integer points in this interval are \(-1\), \(0\), and \(1\). ### Step 2: Break the integral into segments We can break the integral into four parts based on the identified points: \[ I = \int_{-\frac{\pi}{2}}^{-1} \frac{dx}{[x] + [\sin x] + 4} + \int_{-1}^{0} \frac{dx}{[x] + [\sin x] + 4} + \int_{0}^{1} \frac{dx}{[x] + [\sin x] + 4} + \int_{1}^{\frac{\pi}{2}} \frac{dx}{[x] + [\sin x] + 4} \] ### Step 3: Evaluate each segment 1. **For \(x \in \left[-\frac{\pi}{2}, -1\right)\)**: - \([x] = -2\) - \([\sin x] = -1\) (since \(\sin x\) ranges from \(-1\) to \(0\)) - Thus, the integral becomes: \[ \int_{-\frac{\pi}{2}}^{-1} \frac{dx}{-2 - 1 + 4} = \int_{-\frac{\pi}{2}}^{-1} \frac{dx}{1} = \left[-x\right]_{-\frac{\pi}{2}}^{-1} = -(-1) + \frac{\pi}{2} = 1 + \frac{\pi}{2} \] 2. **For \(x \in [-1, 0)\)**: - \([x] = -1\) - \([\sin x] = -1\) - Thus, the integral becomes: \[ \int_{-1}^{0} \frac{dx}{-1 - 1 + 4} = \int_{-1}^{0} \frac{dx}{2} = \frac{1}{2} \left[x\right]_{-1}^{0} = \frac{1}{2}(0 - (-1)) = \frac{1}{2} \] 3. **For \(x \in [0, 1)\)**: - \([x] = 0\) - \([\sin x] = 0\) - Thus, the integral becomes: \[ \int_{0}^{1} \frac{dx}{0 + 0 + 4} = \int_{0}^{1} \frac{dx}{4} = \frac{1}{4} \left[x\right]_{0}^{1} = \frac{1}{4}(1 - 0) = \frac{1}{4} \] 4. **For \(x \in [1, \frac{\pi}{2}]\)**: - \([x] = 1\) - \([\sin x] = 0\) - Thus, the integral becomes: \[ \int_{1}^{\frac{\pi}{2}} \frac{dx}{1 + 0 + 4} = \int_{1}^{\frac{\pi}{2}} \frac{dx}{5} = \frac{1}{5} \left[x\right]_{1}^{\frac{\pi}{2}} = \frac{1}{5}\left(\frac{\pi}{2} - 1\right) \] ### Step 4: Combine all parts Now we combine all the evaluated integrals: \[ I = \left(1 + \frac{\pi}{2}\right) + \frac{1}{2} + \frac{1}{4} + \frac{1}{5}\left(\frac{\pi}{2} - 1\right) \] ### Step 5: Simplify the expression Combining the constants and the terms involving \(\pi\): 1. The constant terms: \[ 1 + \frac{1}{2} + \frac{1}{4} - \frac{1}{5} = \frac{20}{20} + \frac{10}{20} + \frac{5}{20} - \frac{4}{20} = \frac{31}{20} \] 2. The \(\pi\) terms: \[ \frac{\pi}{2} + \frac{\pi}{10} = \frac{5\pi}{10} + \frac{\pi}{10} = \frac{6\pi}{10} = \frac{3\pi}{5} \] Thus, the final answer is: \[ I = \frac{31}{20} + \frac{3\pi}{5} \] ### Final Answer \[ I = \frac{31 + 12\pi}{20} \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 9|6 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 7|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate -int_(3pi//2)^(pi//2)[2sinx]dx , when [.] denotes the greatest integer function.

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

Evaluate: int_(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the greatest integer function

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of the integral int_(-2)^2 sin^2x/(-2[x/pi]+1/2)dx (where [x] denotes the greatest integer less then or equal to x) is

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to

The value of I=int_(-pi//2)^(pi//2) (cos x dx )/(1+2[ sin^(-1)(sin x)]) (where ,[.] denotes greatest integer function ) is …

Let [x] denote the greatest integer less than or equal to x . Then, int_(0)^(1.5)[x]dx=?

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.